Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(4): e0299520, 2024.
Article in English | MEDLINE | ID: mdl-38573914

ABSTRACT

During the COVID-19 pandemic, the Ad5-nCoV vaccine was applied to the Mexican population before the WHO approved it. In a transversal study, we compare the CanSino vaccine efficacy and a natural SARS-CoV-2 infection in eliciting neutralizing antibodies against the SARS-CoV-2 Delta variant in Guadalajara, Mexico. Participants between 30-60 years were included in the study and classified into three groups: 1) Natural immunity (unvaccinated), 2) Vaccine-induced immunity (vaccinated individuals without a COVID-19 history), and 3) Natural immunity + vaccine-induced immunity. These groups were matched by age and gender. We assessed the ability of individuals' serum to neutralize the Delta variant and compared the results of the different groups using a neutralization test followed by plaque-forming units. Results showed that 39% of individuals' serum with a history of COVID-19 (natural immunity, Group 1) could not neutralize the Delta variant, compared to 33% in vaccinated individuals without COVID-19 (vaccine immunity, Group 2). In contrast, only 7% of vaccinated individuals with a history of COVID-19 (natural + vaccine immunities) could not neutralize the Delta variant. We concluded that the effectiveness of the Ad5-nCoV vaccine to induce neutralizing antibodies against the Delta variant is comparable to that of natural infection (61% vs. 67%). However, in individuals with both forms of immunity (Group 3), it increased to 93%. Based on these results, despite the Ad5-nCoV vaccine originally being designed as a single-dose regimen, it could be recommended that even those who have recovered from COVID-19 should consider vaccination to boost their immunity against this variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Antibodies, Neutralizing , Mexico/epidemiology , Pandemics , COVID-19 Vaccines , Vaccination , Antibodies, Viral
3.
Biometals ; 37(4): 849-856, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38133868

ABSTRACT

Copper has well-documented antibacterial effects but few have evaluated it after prolonged use and against bacteria and viruses. Coupons from three copper formulations (solid, thermal coating, and decal applications) and carbon steel controls were subjected to 200 rounds simulated cleaning using a Wiperator™ and either an accelerated hydrogen peroxide, quaternary ammonium, or artificial sweat products. Antibacterial activity against S. aureus and P. aeruginosa was then evaluated using a modified Environmental Protection Agency protocol. Antiviral activity against coronavirus (229E) and norovirus (MNV-1) surrogates was assessed using the TCID50 method. Results were compared to untreated control coupons. One hour after inoculation, S. aureus exhibited a difference in log kill of 1.16 to 4.87 and P. aeruginosa a log kill difference of 3.39-5.23 (dependent upon copper product and disinfectant) compared to carbon steel. MNV-1 demonstrated an 87-99% reduction on each copper surfaces at 1 h and 99% reduction at 2 h compared to carbon steel. Similarly, coronavirus 229E exhibited a 97-99% reduction after 1 h and 90-99% after 2 h. Simulated use with artificial sweat did not hinder the antiviral nor the antibacterial activity of Cu surfaces. Self-sanitizing copper surfaces maintained antibacterial and antiviral activity after 200 rounds of simulated cleaning.


Subject(s)
Anti-Bacterial Agents , Antiviral Agents , Copper , Staphylococcus aureus , Copper/pharmacology , Copper/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Microbial Sensitivity Tests , Norovirus/drug effects , Coronavirus 229E, Human/drug effects , Humans , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/chemistry , Disinfectants/pharmacology , Disinfectants/chemistry
4.
Biomed Res Int ; 2023: 2085140, 2023.
Article in English | MEDLINE | ID: mdl-37942030

ABSTRACT

Ultraviolet (UV) light is an effective disinfection technology, able to inactivate a wide range of microorganisms, including bacteria and fungi. A safer UV wavelength of 222 nm, also known as far-UVC, has been proposed to minimize these harmful effects while retaining the light's disinfection capability. This study is aimed at exploring the antimicrobial activity of filtered far-UVC (222 nm) on a panel of pathogens commonly found in nosocomial installations. A panel of Gram-positive and Gram-negative bacteria and yeast pathogens was tested. Microorganisms were deposited on a plastic surface, allowing them to dry before exposure to the far-UVC light at a distance of 50 cm. Results showed that far-UVC light successfully inhibits the growth of the tested pathogens, although at different exposure times. In conclusion, the results of this study provide fundamental information to achieve reliable disinfection performance with far-UVC lamps with potential applications in healthcare facilities like hospitals and long-term care homes.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Positive Bacteria , Ultraviolet Rays , Fungi , Disinfection/methods
5.
PLoS One ; 18(10): e0291505, 2023.
Article in English | MEDLINE | ID: mdl-37862295

ABSTRACT

CONTEXT: The emergence of multidrug-resistant (MDR) pathogens poses a significant challenge for global public health systems, increasing hospital morbidity and mortality and prolonged hospitalization. OBJECTIVE: We evaluated the antimicrobial activity of a thermosensitive hydrogel containing bio-synthesized silver nanoparticles (bio-AgNPs) based on chitosan/poloxamer 407 using a leaf extract of Eucalyptus calmadulensis. RESULTS: The thermosensitive hydrogel was prepared by a cold method after mixing the ingredients and left at 4°C overnight to ensure the complete solubilization of poloxamer 407. The stability of the hydrogel formulation was evaluated at room temperature for 3 months, and the absorption peak (420 nm) of the NPs remained unchanged. The hydrogel formulation demonstrated rapid gelation under physiological conditions, excellent water retention (85%), and broad-spectrum antimicrobial activity against MDR clinical isolates and ATCC strains. In this regard, minimum inhibitory concentration and minimum microbial concentration values of the bio-AgNPs ranged from 2-8 µg/mL to 8-128 µg/mL, respectively. Formulation at concentrations <64 µg/mL showed no cytotoxic effect on human-derived macrophages (THP-1 cells) with no induction of inflammation. CONCLUSIONS: The formulated hydrogel could be used in biomedical applications as it possesses a broad antimicrobial spectrum and anti-inflammatory properties without toxic effects on human cells.


Subject(s)
Anti-Infective Agents , Chitosan , Eucalyptus , Metal Nanoparticles , Humans , Chitosan/pharmacology , Poloxamer , Silver/pharmacology , Biocompatible Materials , Anti-Infective Agents/pharmacology , Hydrogels , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
6.
Plants (Basel) ; 12(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37653861

ABSTRACT

In this study, the leaves of Kalanchoe fedtschenkoi were consecutively macerated with hexane, chloroform, and methanol. These extracts were used to assess the bioactivities of the plant. The antimicrobial activity was tested against a panel of Gram-positive and -negative pathogenic bacterial and fungal strains using the microdilution method. The cytotoxicity of K. fedtschenkoi extracts was investigated using human-derived macrophage THP-1 cells through the MTT assay. Finally, the anti-inflammatory activity of extracts was studied using the same cell line by measuring the secretion of IL-10 and IL-6. The phytoconstituents of hexane and chloroform extracts were evaluated using gas chromatography-mass spectrometry (GC/MS). In addition, high-performance liquid chromatography (HPLC) was used to study the phytochemical content of methanol extract. The total flavonoid content (TFC) of methanol extract is also reported. The chemical composition of K. fedtschenkoi extracts was evaluated using Fourier-transform infrared spectroscopy (FTIR). Results revealed that the chloroform extract inhibited the growth of Pseudomonas aeruginosa at 150 µg/mL. At the same concentration, methanol extract inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA). Regarding their cytotoxicity, the three extracts were highly cytotoxic against the tested cell line at IC50 < 3 µg/mL. In addition, the chloroform extract significantly stimulated the secretion of IL-10 at 50 µg/mL (p < 0.01). GC/MS analyses revealed that hexane and chloroform extracts contain fatty acids, sterols, vitamin E, and triterpenes. The HPLC analysis demonstrated that methanol extract was constituted by quercetin and kaempferol derivatives. This is the first report in which the bioactivities and chemical profiles of K. fedtschenkoi are assessed for non-polar and polar extracts.

7.
Plants (Basel) ; 12(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687382

ABSTRACT

In this work, bulb extracts of Tigridia vanhouttei were obtained by maceration with solvents of increasing polarity. The extracts were evaluated against a panel of pathogenic bacterial and fungal strains using the minimal inhibitory concentration (MIC) assay. The cytotoxicity of the extracts was tested against two cell lines (THP-1 and A549) using the MTT assay. The anti-inflammatory activity of the extracts was evaluated in THP-1 cells by measuring the secretion of pro-inflammatory (IL-6 and TNF-α) and anti-inflammatory (IL-10) cytokines by ELISA. The chemical composition of the extracts was recorded by FTIR spectroscopy, and their chemical profiles were evaluated using GC-MS. The results revealed that only hexane extract inhibited the growth of the clinical isolate of Pseudomonas aeruginosa at 200 µg/mL. Against THP-1 cells, hexane and chloroform extracts were moderately cytotoxic, as they exhibited LC50 values of 90.16, and 46.42 µg/mL, respectively. Treatment with methanol extract was weakly cytotoxic at LC50 443.12 µg/mL against the same cell line. Against the A549 cell line, hexane, chloroform, and methanol extracts were weakly cytotoxic because of their LC50 values: 294.77, 1472.37, and 843.12 µg/mL. The FTIR analysis suggested the presence of natural products were confirmed by carboxylic acids, ketones, hydroxyl groups, or esters. The GC-MS profile of extracts revealed the presence of phytosterols, tetracyclic triterpenes, multiple fatty acids, and sugars. This report confirms the antimicrobial, cytotoxic, and anti-inflammatory activities of T. vanhouttei.

8.
Int J Mol Sci ; 24(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37629182

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped respiratory ß coronavirus that causes coronavirus disease (COVID-19), leading to a deadly pandemic that has claimed millions of lives worldwide. Like other coronaviruses, the SARS-CoV-2 genome also codes for non-structural proteins (NSPs). These NSPs are found within open reading frame 1a (ORF1a) and open reading frame 1ab (ORF1ab) of the SARS-CoV-2 genome and encode NSP1 to NSP11 and NSP12 to NSP16, respectively. This study aimed to collect the available literature regarding NSP inhibitors. In addition, we searched the natural product database looking for similar structures. The results showed that similar structures could be tested as potential inhibitors of the NSPs.


Subject(s)
Biological Products , COVID-19 , Humans , SARS-CoV-2 , Databases, Factual , Open Reading Frames
9.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175653

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is a type of kidney cancer that arises from the cells lining the tubes of the kidney. The tumor immune microenvironment (TIME) of ccRCC is a complex interplay of various immune cells, cytokines, and signaling pathways. One of the critical features of the ccRCC TIME is the presence of infiltrating immune cells, including T cells, B cells, natural killer cells, dendritic cells, and myeloid-derived suppressor cells. Among these cells, CD8+ T cells are particularly important in controlling tumor growth by recognizing and killing cancer cells. However, the TIME of ccRCC is also characterized by an immunosuppressive environment that hinders the function of immune cells. Several mechanisms contribute to the immunosuppressive nature of the ccRCC TIME. For instance, ccRCC cells produce cytokines such as interleukin-10 (IL-10) and transforming growth factor-beta (TGF-ß), which suppress immune cell activation and promote the differentiation of regulatory T cells (Tregs). Tregs, in turn, dampen the activity of effector T cells and promote tumor growth. In addition, ccRCC cells can express programmed death-ligand 1 (PD-L1), which interacts with the programmed cell death protein 1 (PD-1) receptor on T cells to inhibit their function. In addition, other immune checkpoint proteins, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and lymphocyte activation gene 3 (LAG-3), also contribute to the immunosuppressive milieu of the ccRCC TIME. Finally, the hypoxic and nutrient-poor microenvironment of ccRCC can stimulate the production of immunosuppressive metabolites, such as adenosine and kynurenine, which further impair the function of immune cells. Understanding the complex interplay between tumor cells and the immune system in the ccRCC TIME is crucial for developing effective immunotherapies to treat this disease.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/metabolism , CD8-Positive T-Lymphocytes , T-Lymphocytes, Regulatory , Cytokines , Tumor Microenvironment
10.
Article in English | MEDLINE | ID: mdl-37032602

ABSTRACT

The delivery of drugs in an encapsulated environment is designed to precisely target specific tissues, avoiding a systemic circulation of the drug. Lungs are organs exposed to the environment with multiple defense barriers. However, many pathogens can still colonize and infect the airways bypassing the hostile environment of the lungs. In more complicated situations, some pathogens have developed strategies to multiply and survive within macrophages, one of the first immune cell responses to clearing infections in mammals. Niosomes are artificial vesicles that can be loaded with drugs, offering an alternative strategy to treat intracellular pathogens as nanocarriers. Members of the mycobacteria genus are intracellular pathogens that have evolved to escape the immunological response, specifically in macrophages, the white cells responsible for the clearance of pathogens. This review analyzed the state-of-the-art niosome synthesis aimed at tackling the problem of intracellular pathogen therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Subject(s)
Liposomes , Lung , Animals , Nanotechnology , Nanomedicine , Drug Delivery Systems , Mammals
11.
Pharmaceutics ; 15(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36986869

ABSTRACT

Apical periodontitis is an inflammation leading to the injury and destruction of periradicular tissues. It is a sequence of events that starts from root canal infection, endodontic treatment, caries, or other dental interventions. Enterococcus faecalis is a ubiquitous oral pathogen that is challenging to eradicate because of biofilm formation during tooth infection. This study evaluated a hydrolase (CEL) from the fungus Trichoderma reesei combined with amoxicillin/clavulanic acid as a treatment against a clinical E. faecalis strain. Electron microscopy was used to visualize the structure modification of the extracellular polymeric substances. Biofilms were developed on human dental apices using standardized bioreactors to evaluate the antibiofilm activity of the treatment. Calcein and ethidium homodimer assays were used to evaluate the cytotoxic activity in human fibroblasts. In contrast, the human-derived monocytic cell line (THP-1) was used to evaluate the immunological response of CEL. In addition, the secretion of the pro-inflammatory cytokines IL-6 and TNF-α and the anti-inflammatory cytokine IL-10 were measured by ELISA. The results demonstrated that CEL did not induce the secretion of IL-6 and TNF-α when compared with lipopolysaccharide used as a positive control. Furthermore, the treatment combining CEL with amoxicillin/clavulanic acid showed excellent antibiofilm activity, with a 91.4% reduction in CFU on apical biofilms and a 97.6% reduction in the microcolonies. The results of this study could be used to develop a treatment to help eradicate persistent E. faecalis in apical periodontitis.

12.
Future Sci OA ; 8(7): FSO808, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36248067

ABSTRACT

The use of facial protection has been adopted globally due to the COVID-19 pandemic. We dissected four respirators and one surgical mask into layers to determine whether or not the virus adheres to them. These individual layers were contaminated with the SARS-CoV-2 Delta variant, and its release by vortexing was performed. Samples were used to infect Vero cells, and a plaque assay was used to evaluate the adherence of the virus to the layers. Results showed that a cumulative log reduction of the layers reduced the load of the virus by at least sixfold. Our study confirms the effectiveness of facial protection in reducing the transmission and/or infection of SARS-CoV-2.

13.
J Arthroplasty ; 37(12): 2455-2459, 2022 12.
Article in English | MEDLINE | ID: mdl-35840076

ABSTRACT

BACKGROUND: The correct diagnosis of a chronic periprosthetic joint infection (PJI) is a major challenge in clinical practice, with the "gold standard" for diagnosis yet to be established. Synovial fluid analysis has been proven to be a useful tool for that purpose. Cell-free DNA (cf-DNA) levels have been shown to be increased in several conditions such as cancer, trauma, and sepsis. Therefore, this study was designed to evaluate the potential of synovial fluid cf-DNA quantification for the diagnosis of chronic periprosthetic infections following total knee arthroplasty. METHODS: A prospective study with patients undergoing total knee arthroplasty revision surgery for any indication was performed. PJI diagnosis was defined according to the Second International Consensus Meeting on Musculoskeletal Infection (2018) criteria. The study cohort consisted of 26 patients classified as infected and 40 as noninfected. Synovial fluid cf-DNA direct quantification by fluorescent staining was made. Sensitivity, specificity, and receiver operating characteristic curve were calculated. RESULTS: The cf-DNA levels were significantly higher in patients who had PJIs (122.5 ± 57.2 versus 4.6 ± 2.8 ng/µL, P < .0001). With a cutoff of 15 ng/µL, the area under the receiver operating characteristic, sensitivity, and specificity of cf-DNA were 0.978, 96.2%, and 100%, respectively. CONCLUSION: The present study has shown that cf-DNA is increased in synovial fluid of patients who have chronic PJIs. It is a promising biomarker for knee PJI diagnosis and further studies are needed to confirm its utility.


Subject(s)
Arthritis, Infectious , Arthroplasty, Replacement, Hip , Cell-Free Nucleic Acids , Prosthesis-Related Infections , Humans , Prosthesis-Related Infections/diagnosis , Prosthesis-Related Infections/surgery , Prospective Studies , Sensitivity and Specificity , Synovial Fluid/chemistry , Arthritis, Infectious/surgery , Knee Joint/surgery , Biomarkers/analysis , DNA
14.
Microorganisms ; 8(7)2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32635236

ABSTRACT

BACKGROUND: Mycobacterium avium subspecies paratuberculosis (MAP), a member of the mycobacteriaceae family, causes Johne's disease in ruminants, which resembles Crohn's disease (CD) in humans. MAP was proposed to be one of the causes of human CD, but the evidence remains elusive. Macrophages were reported to be the only cell where MAP proliferates in ruminants and humans and is likely the major producer of TNFα-associated inflammation. However, whether human dendritic cells (DCs), another major antigen-presenting cell (APC), have the ability to harbor MAP and disseminate infection, remains unknown. METHODS: Human monocyte-derived dendritic cells (moDCs) were infected with MAP and phagocytosis and intracellular survival were quantified by immunofluorescence (IF) and colony counts, respectively. MoDC cytokine expression was measured via ELISA and their activation state was measured via flow cytometry. RESULTS: We showed that MAP can infect and replicate in human moDCs as means to evade the immune system for successful infection, through inhibition of the phago-lysosome fusion via the secretion of protein tyrosine phosphatase PtpA. This mechanism initially led to a state of tolerance in moDCs and then subsequently caused a pro-inflammatory response as infection persisted, characterized by the upregulation of IL-6 and TNFα, and downregulation of IL-10. Moreover, we showed that moDCs have the ability to phagocytose up to 18% of MAP, when exposed at a multiplicity of infection of 1:1. CONCLUSION: Infection and subsequent proliferation of MAP within moDCs could provide a unique means for the dissemination of MAP to lymphoid tissue, while altering immune responses to facilitate the persistence of infection of host tissues in CD.

15.
Front Immunol ; 10: 2088, 2019.
Article in English | MEDLINE | ID: mdl-31552036

ABSTRACT

Cancer patients are at increased risk of developing thrombosis, comorbidity that has been associated with increased neutrophil counts and the formation of neutrophil extracellular traps (NETs). Interleukin-1ß (IL-1ß) modulates the expression of granulocyte colony-stimulating factor (G-CSF), a cytokine that promotes cancer-associated neutrophilia and NET generation. Herein, we combined a murine breast cancer model with a flow-restriction thrombosis model to evaluate whether the IL-1ß blockade could interfere with cancer-associated thrombosis. Mice bearing metastatic 4T1 tumors exhibited high neutrophil counts as well as elevated expression of G-CSF and IL-1ß in their tumors. On the other hand, mice bearing non-metastatic 67NR tumors showed no elevation in neutrophil counts and displayed low expression levels of G-CSF and IL-1ß in their tumors. 4T1 tumor-bearing mice but not 67NR tumor-bearing mice exhibited a NET-dependent prothrombotic state. Pharmacological blockade of IL-1 receptor (IL-1R) decreased the primary growth of 4T1 tumors and reduced the systemic levels of myeloperoxidase, cell-free DNA (cfDNA) and G-CSF, without interfering with the neutrophil counts. Most remarkably, the blockade of IL-1R abolished the prothrombotic state observed in 4T1 tumor-bearing mice. Overall, our results demonstrate that IL-1ß might be a feasible target to attenuate cancer-associated thrombosis, particularly in cancer types that rely on increased G-CSF production and involvement of NET formation.


Subject(s)
Extracellular Traps/drug effects , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1beta/antagonists & inhibitors , Mammary Neoplasms, Experimental/complications , Receptors, Interleukin-1/antagonists & inhibitors , Thrombosis/prevention & control , Animals , Breast Neoplasms/complications , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Extracellular Traps/metabolism , Female , Granulocyte Colony-Stimulating Factor/genetics , Granulocyte Colony-Stimulating Factor/metabolism , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Leukocyte Count , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mice, Inbred BALB C , Neutrophils/metabolism , Peroxidase/metabolism , Receptors, Interleukin-1/metabolism , Thrombosis/complications , Thrombosis/metabolism , Tumor Burden/drug effects
16.
OTA Int ; 1(3): e008, 2018 Dec.
Article in English | MEDLINE | ID: mdl-33937646

ABSTRACT

INTRODUCTION: Nonunion is a challenging condition in orthopaedics as its etiology is not fully understood. Clinical interventions currently aim to stimulate both the biological and mechanical aspects of the bone healing process by using bone autografts and surgical fixation. However, recent observations showed that atrophic nonunion tissues contain putative osteoprogenitors, raising the hypothesis that its reactivation could be explored to achieve bone repair. METHODS: Here we characterized atrophic nonunion stromal cells (NUSC) in vitro, using bone marrow stromal cells (BMSC) and osteoblasts as controls cells of the osteoblastic lineage, and evaluated its ability to form bone in vivo. RESULTS: NUSC had proliferative and senescence rates comparable to BMSC and osteoblasts, and homogeneously expressed the osteolineage markers CD90 and CD73. Regarding CD105 and CD146 expression, NUSC were closely related to osteoblasts, both with an inferior percentage of CD105+/CD146+ cells as compared to BMSC. Despite this, NUSC differentiated along the osteogenic and adipogenic lineages in vitro; and when transplanted subcutaneously into immunocompromised mice, new bone formation and hematopoietic marrow were established. CONCLUSIONS: This study demonstrates that NUSC are osteogenically competent, supporting the hypothesis that their endogenous reactivation could be a strategy to stimulate the bone formation while reducing the amount of bone autograft requirements.

17.
Injury ; 48 Suppl 4: S41-S49, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29145967

ABSTRACT

INTRODUCTION: Femoral shaft fractures generally occur in young adults following a high-energy trauma and are prone to delayed union/non-union. Novel therapies to stimulate bone regeneration will have to mimic some of the aspects of the biology of fracture healing; however, which are these aspects is unclear. Locked intramedullary nailing is the current treatment of choice for the stabilisation of femur shaft fractures, and it is associated with accelerated healing and increased union rates. These benefits were partially attributed to the reaming procedure, which, regardless of significantly destroying the haematoma, stimulates the healing response. To better understand how reaming influences healing, we evaluated the viability of the nucleated cell fraction and the frequency of CD146+ skeletal progenitors, which contain multipotent cells, in the post-reaming haematoma. We also screened the concentrations of inflammatory mediators and growth factors in the fracture site after reaming compared with those in the original haematoma. METHODS: Pre- and post-reaming haematomas were percutaneously aspirated from the fracture site of 15 patients with closed femoral shaft fractures. Cellular viability and the percentage of CD146+ progenitors were analysed by flow cytometry. The concentrations of cytokines and growth factors were determined by ELISA. RESULTS: AnnexinV/Pi analysis showed that the viability of the total nucleated cell fraction was decreased in the post-reaming haematoma. However, the procedure increased the percentage of CD146+ skeletal progenitors in the fracture site. Analysis of cytokines and growth factors in supernatants showed a decreased concentration of the inflammatory mediators IL-6, CCL-4, and MCP-1, along with an increase of anti-inflammatory IL-10, and the growth factors bFGF and PDGF-AB. CONCLUSION: These findings support the view that the positive effects of reaming on fracture healing might result from mechanically grafting the fracture site with a population of skeletal progenitors that contain multipotent cells; transitioning the signalling environment to a less inflammatory state, and enhancing the availability of specific osteogenic and angiogenic factors. A better understanding of the requisite stimuli for optimal bone repair, considering the disturbances made by orthopaedic treatments, will be determinant for the development of innovative treatments for bone repair.


Subject(s)
Basigin/metabolism , Femoral Fractures/surgery , Fracture Fixation, Intramedullary , Fracture Healing/physiology , Hematoma/pathology , Inflammation Mediators/metabolism , Osteogenesis/physiology , Adult , Bone Nails , Enzyme-Linked Immunosorbent Assay , Female , Femoral Fractures/immunology , Flow Cytometry , Fracture Healing/immunology , Hematoma/etiology , Humans , Male , Middle Aged , Young Adult
18.
Sci Rep ; 7(1): 6438, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28743887

ABSTRACT

Cancer patients are at an increased risk of developing thromboembolic complications. Several mechanisms have been proposed to explain cancer-associated thrombosis including the release of tumor-derived extracellular vesicles and the activation of host vascular cells. It was proposed that neutrophil extracellular traps (NETs) contribute to the prothrombotic phenotype in cancer. In this study, we evaluated the possible cooperation between tumor-derived exosomes and NETs in cancer-associated thrombosis. Female BALB/c mice were orthotopically injected with 4T1 breast cancer cells. The tumor-bearing animals exhibited increased levels of plasma DNA and myeloperoxidase in addition to significantly increased numbers of circulating neutrophils. Mice were subjected to either Rose Bengal/laser-induced venous thrombosis or ferric chloride-induced arterial thrombosis models. The tumor-bearing mice exhibited accelerated thrombus formation in both models compared to tumor-free animals. Treatment with recombinant human DNase 1 reversed the prothrombotic phenotype of tumor-bearing mice in both models. Remarkably, 4T1-derived exosomes induced NET formation in neutrophils from mice treated with granulocyte colony-stimulating factor (G-CSF). In addition, tumor-derived exosomes interacted with NETs under static conditions. Accordingly, the intravenous administration of 4T1-derived exosomes into G-CSF-treated mice significantly accelerated venous thrombosis in vivo. Taken together, our observations suggest that tumor-derived exosomes and neutrophils may act cooperatively in the establishment of cancer-associated thrombosis.


Subject(s)
Exosomes/pathology , Mammary Neoplasms, Experimental/pathology , Neutrophils/pathology , Thrombosis/etiology , Animals , Cell Line, Tumor , Disease Models, Animal , Extracellular Traps , Female , Granulocyte Colony-Stimulating Factor/pharmacology , Mammary Neoplasms, Experimental/complications , Mice, Inbred BALB C , Thrombosis/drug therapy , Venous Thrombosis/drug therapy , Venous Thrombosis/etiology
19.
Oncol Lett ; 12(1): 315-322, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27347144

ABSTRACT

Hypoxia and necrosis are fundamental features of glioma, and their emergence is critical for the rapid biological progression of this fatal tumor. The presence of vaso-occlusive thrombus is higher in grade IV tumors [glioblastoma multiforme (GBM)] compared with lower grade tumors, suggesting that the procoagulant properties of the tumor contribute to its aggressive behavior, as well as the establishment of tumor hypoxia and necrosis. Tissue factor (TF), the primary cellular initiator of coagulation, is overexpressed in GBMs and likely favors a thrombotic microenvironment. Phosphatase and tensin homolog (PTEN) loss and hypoxia are two common alterations observed in glioma that may be responsible for TF upregulation. In the present study, ST1 and P7 rat glioma lines, with different levels of aggressiveness, were comparatively analyzed with the aim of identifying differences in procoagulant mechanisms. The results indicated that P7 cells display potent procoagulant activity compared with ST1 cells. Flow cytometric analysis showed less pronounced levels of TF in ST1 cells compared with P7 cells. Notably, P7 cells supported factor X (FX) activation via factor VIIa, whereas no significant FXa generation was observed in ST1 cells. Furthermore, the exposure of phosphatidylserine on the surface of P7 and ST1 cells was investigated. The results supported the assembly of prothrombinase complexes, accounting for the production of thrombin. Furthermore, reverse transcription-quantitative polymerase chain reaction showed that CoCl2 (known to induce a hypoxic-like stress) led to an upregulation of TF levels in P7 and ST1 cells. Therefore, increased TF expression in P7 cells was accompanied by increased TF procoagulant activity. In addition, hypoxia increased the shedding of procoagulant TF-bearing microvesicles in both cell lines. Finally, hypoxic stress induced by treatment with CoCl2 upregulated the expression of the PAR1 receptor in both P7 and ST1 cells. In addition to PAR1, P7, but not ST1 cells, expressed higher levels of PAR2 under hypoxic stress. Thus, modulating these molecular interactions may provide additional insights for the development of more efficient therapeutic strategies against aggressive glioma.

20.
PLoS Pathog ; 10(9): e1004338, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25211214

ABSTRACT

BACKGROUND: Invasion of mosquito salivary glands (SGs) by Plasmodium falciparum sporozoites is an essential step in the malaria life cycle. How infection modulates gene expression, and affects hematophagy remains unclear. PRINCIPAL FINDINGS: Using Affimetrix chip microarray, we found that at least 43 genes are differentially expressed in the glands of Plasmodium falciparum-infected Anopheles gambiae mosquitoes. Among the upregulated genes, one codes for Agaphelin, a 58-amino acid protein containing a single Kazal domain with a Leu in the P1 position. Agaphelin displays high homology to orthologs present in Aedes sp and Culex sp salivary glands, indicating an evolutionarily expanded family. Kinetics and surface plasmon resonance experiments determined that chemically synthesized Agaphelin behaves as a slow and tight inhibitor of neutrophil elastase (K(D) ∼ 10 nM), but does not affect other enzymes, nor promotes vasodilation, or exhibit antimicrobial activity. TAXIscan chamber assay revealed that Agaphelin inhibits neutrophil chemotaxis toward fMLP, affecting several parameter associated with cell migration. In addition, Agaphelin reduces paw edema formation and accumulation of tissue myeloperoxidase triggered by injection of carrageenan in mice. Agaphelin also blocks elastase/cathepsin-mediated platelet aggregation, abrogates elastase-mediated cleavage of tissue factor pathway inhibitor, and attenuates neutrophil-induced coagulation. Notably, Agaphelin inhibits neutrophil extracellular traps (NETs) formation and prevents FeCl3-induced arterial thrombosis, without impairing hemostasis. CONCLUSIONS: Blockade of neutrophil elastase emerges as a novel antihemostatic mechanism in hematophagy; it also supports the notion that neutrophils and the innate immune response are targets for antithrombotic therapy. In addition, Agaphelin is the first antihemostatic whose expression is induced by Plasmodium sp infection. These results suggest that an important interplay takes place in parasite-vector-host interactions.


Subject(s)
Anopheles/parasitology , Hemostasis/physiology , Host-Parasite Interactions , Insect Proteins/metabolism , Neutrophils/immunology , Plasmodium falciparum/pathogenicity , Salivary Proteins and Peptides/metabolism , Thrombosis/prevention & control , Amino Acid Sequence , Animals , Anopheles/metabolism , Circular Dichroism , Edema/etiology , Edema/metabolism , Edema/prevention & control , Female , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Vectors , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Sequence Data , Salivary Glands/metabolism , Salivary Glands/parasitology , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/genetics , Sequence Homology, Amino Acid , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...