Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 21(1): 122-132, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30195257

ABSTRACT

Hybridization is a widespread phenomenon present in numerous lineages across the tree of life. Its evolutionary consequences range from effects on the origin and maintenance, to the loss of biodiversity. We studied genetic diversity and intra- and interspecific gene flow between two sympatric populations of closely-related species, Pitcairnia flammea and P. corcovadensis (Bromeliaceae), which are adapted to naturally fragmented Neotropical inselbergs, based on nuclear and plastidial DNA. Our main results indicate a strong reproductive isolation barrier, although low levels of interspecific gene flow were observed in both sympatric populations. The low rates of intraspecific gene flow observed for both P. corcovadensis and P. flammea populations corroborate the increasing body of evidence that inselberg bromeliad species are maintained as discrete evolutionary units despite the presence of low genetic connectivity. Nuclear patterns of genetic diversity and gene flow revealed that hybridization and introgression might not cause species extinction via genetic assimilation of the rare P. corcovadensis. In the face of reduced intraspecific gene exchange, hybridization and introgression may be important aspects of the Pitcairnia diversification process, with a positive evolutionary impact at the bromeliad community level, and thus contribute to increasing and maintaining genetic diversity in local isolated inselberg populations.


Subject(s)
Bromeliaceae/genetics , Hybridization, Genetic , Reproductive Isolation , Brazil , DNA, Chloroplast/genetics , Gene Flow , Genetic Variation , Geography , Haplotypes/genetics , Species Specificity
2.
Hum Exp Toxicol ; 36(1): 33-41, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26944940

ABSTRACT

Pentavalent antimonial (Sb5+) drugs such as meglumine antimoniate (MA) are the mainstay treatment of leishmaniases in developing countries. The effects of these compounds on drug-metabolizing enzymes have not been characterized and their potential pharmacokinetic interactions with other drugs are therefore unknown. The present study investigated whether treatment with MA (300 mg Sb5+/kg body weight/day, subcutaneously) for 24 days affected the activities of cytochrome P450 (CYP)1A (ethoxyresorufin- O-deethylase), CYP2A5 (coumarin 7-hydroxylase), CYP2E1 ( p-nitrophenol-hydroxylase), CYP2B9/10 (benzyloxy-resorufin- O-debenzylase), or CYP3A11 (erythromycin- N-demethylase) in the livers of Swiss Webster (SW) and DBA-2 male and female mice. The results showed that CYP2A5-, CYP2E1-, and CYP3A11-catalyzed reactions were unaffected by MA treatment. A decrease in CYP2B9/10 activity was noted in DBA-2 females (but not males) and was not observed in SW males or females. However, repeated MA administration reduced mouse liver CYP1A activity. CYP1A2 messenger RNA (mRNA) levels were not affected by MA and in vitro exposure of mouse liver microsomes to Sb3+ and Sb5+ did not reduce CYP1A activity. These findings suggested that in vivo treatment with Sb5+ drugs depressed CYP1A activity, without downregulating CYP1A2 mRNA expression. Since in vitro treatment of liver microsomes failed to inhibit CYP1A activity, this effect may require intact cells.

SELECTION OF CITATIONS
SEARCH DETAIL