Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 31(8): 2360-2375, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37403357

ABSTRACT

RNA vaccines possess significant clinical promise in counteracting human diseases caused by infectious or cancerous threats. Self-amplifying replicon RNA (repRNA) has been thought to offer the potential for enhanced potency and dose sparing. However, repRNA is a potent trigger of innate immune responses in vivo, which can cause reduced transgene expression and dose-limiting reactogenicity, as highlighted by recent clinical trials. Here, we report that multivalent repRNA vaccination, necessitating higher doses of total RNA, could be safely achieved in mice by delivering multiple repRNAs with a localizing cationic nanocarrier formulation (LION). Intramuscular delivery of multivalent repRNA by LION resulted in localized biodistribution accompanied by significantly upregulated local innate immune responses and the induction of antigen-specific adaptive immune responses in the absence of systemic inflammatory responses. In contrast, repRNA delivered by lipid nanoparticles (LNPs) showed generalized biodistribution, a systemic inflammatory state, an increased body weight loss, and failed to induce neutralizing antibody responses in a multivalent composition. These findings suggest that in vivo delivery of repRNA by LION is a platform technology for safe and effective multivalent vaccination through mechanisms distinct from LNP-formulated repRNA vaccines.


Subject(s)
Nanoparticles , RNA , Humans , Mice , Animals , Tissue Distribution , RNA/genetics , Antigens , Immunity, Humoral , Inflammation
2.
Sci Immunol ; 6(56)2021 02 12.
Article in English | MEDLINE | ID: mdl-33579750

ABSTRACT

Microanatomical organization of innate immune cells within lymph nodes (LNs) is critical for the generation of adaptive responses. In particular, steady-state LN-resident dendritic cells (Res cDCs) are strategically localized to intercept lymph-draining antigens. Whether myeloid cell organization changes during inflammation and how that might affect the generation of immune responses are unknown. Here, we report that during type I, but not type II, inflammation after adjuvant immunization or viral infection, antigen-presenting Res cDCs undergo CCR7-dependent intranodal repositioning from the LN periphery into the T cell zone (TZ) to elicit T cell priming. Concurrently, inflammatory monocytes infiltrate the LNs via local blood vessels, enter the TZ, and cooperate with Res cDCs by providing polarizing cytokines to optimize T cell effector differentiation. Monocyte infiltration is nonuniform across LNs, generating distinct microenvironments with varied local innate cell composition. These spatial microdomains are associated with divergent early T cell effector programming, indicating that innate microenvironments within LNs play a critical role in regulating the quality and heterogeneity of T cell responses. Together, our findings reveal that dynamic modulation of innate cell microenvironments during type I inflammation leads to optimized generation of adaptive immune responses to vaccines and infections.


Subject(s)
Cell Communication/immunology , Cellular Microenvironment/immunology , Lymph Nodes/immunology , Strongylida Infections/immunology , T-Lymphocytes/immunology , Adoptive Transfer , Animals , Cell Movement/immunology , Dendritic Cells/immunology , Disease Models, Animal , Humans , Immunity, Innate , Inflammation/immunology , Inflammation/pathology , Lymph Nodes/cytology , Lymph Nodes/pathology , Lymphocyte Activation , Mice , Mice, Transgenic , Monocytes/immunology , Nippostrongylus/immunology , Strongylida Infections/parasitology
3.
Cell Rep ; 31(3): 107523, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32320656

ABSTRACT

Recently developed approaches for highly multiplexed imaging have revealed complex patterns of cellular positioning and cell-cell interactions with important roles in both cellular- and tissue-level physiology. However, tools to quantitatively study cellular patterning and tissue architecture are currently lacking. Here, we develop a spatial analysis toolbox, the histo-cytometric multidimensional analysis pipeline (CytoMAP), which incorporates data clustering, positional correlation, dimensionality reduction, and 2D/3D region reconstruction to identify localized cellular networks and reveal features of tissue organization. We apply CytoMAP to study the microanatomy of innate immune subsets in murine lymph nodes (LNs) and reveal mutually exclusive segregation of migratory dendritic cells (DCs), regionalized compartmentalization of SIRPα- dermal DCs, and preferential association of resident DCs with select LN vasculature. The findings provide insights into the organization of myeloid cells in LNs and demonstrate that CytoMAP is a comprehensive analytics toolbox for revealing features of tissue organization in imaging datasets.


Subject(s)
Lymphoid Tissue/metabolism , Myeloid Cells/metabolism , Animals , Mice , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...