Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Mol Res ; 7(3): 631-42, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18752190

ABSTRACT

The cultivated peanut (Arachis hypogaea L.) is an allotetraploid of recent origin, with an AABB genome and low genetic diversity. Perhaps because of its limited genetic diversity, this species lacks resistance to a number of important pests and diseases. In contrast, wild species of Arachis are genetically diverse and are rich sources of disease resistance genes. Consequently, a study of wild peanut relatives is attractive from two points of view: to help understand peanut genetics and to characterize wild alleles that could confer disease resistance. With this in mind, a diploid population from a cross between two wild peanut relatives was developed, in order to make a dense genetic map that could serve as a reference for peanut genetics and in order to characterize the regions of the Arachis genome that code for disease resistance. We tested two methods for developing and genotyping single nucleotide polymorphisms in candidate genes for disease resistance; one is based on single-base primer extension methods and the other is based on amplification refractory mutation system-polymerase chain reaction. We found single-base pair extension to be an efficient method, suitable for high-throughput, single-nucleotide polymorphism mapping; it allowed us to locate five candidate genes for resistance on our genetic map.


Subject(s)
Arachis/genetics , Plant Diseases/immunology , Polymorphism, Single Nucleotide , Arachis/immunology , Chromosome Mapping , Chromosomes, Plant , Immunity, Innate
2.
Theor Appl Genet ; 111(6): 1060-71, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16088397

ABSTRACT

Cultivated peanut (Arachis hypogaea) is an important crop, widely grown in tropical and subtropical regions of the world. It is highly susceptible to several biotic and abiotic stresses to which wild species are resistant. As a first step towards the introgression of these resistance genes into cultivated peanut, a linkage map based on microsatellite markers was constructed, using an F(2) population obtained from a cross between two diploid wild species with AA genome (A. duranensis and A. stenosperma). A total of 271 new microsatellite markers were developed in the present study from SSR-enriched genomic libraries, expressed sequence tags (ESTs), and by "data-mining" sequences available in GenBank. Of these, 66 were polymorphic for cultivated peanut. The 271 new markers plus another 162 published for peanut were screened against both progenitors and 204 of these (47.1%) were polymorphic, with 170 codominant and 34 dominant markers. The 80 codominant markers segregating 1:2:1 (P<0.05) were initially used to establish the linkage groups. Distorted and dominant markers were subsequently included in the map. The resulting linkage map consists of 11 linkage groups covering 1,230.89 cM of total map distance, with an average distance of 7.24 cM between markers. This is the first microsatellite-based map published for Arachis, and the first map based on sequences that are all currently publicly available. Because most markers used were derived from ESTs and genomic libraries made using methylation-sensitive restriction enzymes, about one-third of the mapped markers are genic. Linkage group ordering is being validated in other mapping populations, with the aim of constructing a transferable reference map for Arachis.


Subject(s)
Arachis/genetics , Chromosome Mapping , Microsatellite Repeats/genetics , Polymorphism, Genetic , Base Sequence , Computational Biology , Crosses, Genetic , Expressed Sequence Tags , Gene Library , Molecular Sequence Data , Sequence Analysis, DNA
3.
Mol Genet Genomics ; 270(1): 34-45, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12928866

ABSTRACT

Arachis hypogaea L., commonly known as the peanut or groundnut, is an important and widespread food legume. Because the crop has a narrow genetic base, genetic diversity in A. hypogaea is low and it lacks sources of resistance to many pests and diseases. In contrast, wild diploid Arachis species are genetically diverse and are rich sources of disease resistance genes. The majority of known plant disease resistance genes encode proteins with a nucleotide binding site domain (NBS). In this study, degenerate PCR primers designed to bind to DNA regions encoding conserved motifs within this domain were used to amplify NBS-encoding regions from Arachis spp. The Arachis spp. used were A. hypogaea var. Tatu and wild species that are known to be sources of disease resistance: A. cardenasii, A. duranensis, A. stenosperma and A. simpsonii. A total of 78 complete NBS-encoding regions were isolated, of which 63 had uninterrupted ORFs. Phylogenetic analysis of the Arachis NBS sequences derived in this study and other NBS sequences from Arabidopsis thaliana, Medicago trunculata, Glycine max, Lotus japonicus and Phaseolus vulgaris that are available in public databases This analysis indicates that most Arachis NBS sequences fall within legume-specific clades, some of which appear to have undergone extensive copy number expansions in the legumes. In addition, NBS motifs from A. thaliana and legumes were characterized. Differences in the TIR and non-TIR motifs were identified. The likely effect of these differences on the amplification of NBS-encoding sequences by PCR is discussed.


Subject(s)
Arachis/classification , Arachis/genetics , Genes, Plant , Phylogeny , Arabidopsis/classification , Arabidopsis/genetics , Base Sequence , DNA Primers , Immunity, Innate , Molecular Sequence Data , Plant Diseases/genetics , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...