Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Sensors (Basel) ; 22(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35746185

ABSTRACT

Sensing technologies using optical fibers have been studied and applied since the 1970s in oil and gas, industrial, medical, aerospace, and civil areas. Detecting ultrasound acoustic waves through fiber-optic hydrophone (FOH) sensors can be one solution for continuous measurement of volumes inside production tanks used by these industries. This work presents an FOH system composed of two optical fiber coils made with commercial single mode fiber (SMF) working in the sensor head of a Michelson's interferometer (MI) supported by an active stabilization mechanism that drives another optical coil wound around a piezoelectric actuator (PZT) in the reference arm to mitigate external mechanical and thermal noise from the environment. A 1000 mL glass graduated cylinder filled with water is used as a test tank, inside which the sensor head and an ultrasound source are placed. For detection, amplitudes and phases are measured, and machine learning algorithms predict their respective liquid volumes. The acoustic waves create patterns electronically detected with resolution of 1 mL and sensitivity of 340 mrad/mL and 70 mvolts/mL. The nonlinear behavior of both measurands requires classification, distance metrics, and regression algorithms to define an adequate model. The results show the system can determine liquid volumes with an accuracy of 99.4% using a k-nearest neighbors (k-NN) classification with one neighbor and Manhattan's distance. Moreover, Gaussian process regression using rational quadratic metrics presented a root mean squared error (RMSE) of 0.211 mL.


Subject(s)
Fiber Optic Technology , Optical Fibers , Algorithms
2.
Appl Opt ; 61(9): 2352-2356, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35333253

ABSTRACT

The development of a highly sensitive all-fiber temperature sensor based on a Sagnac interferometer configuration is demonstrated here. We use 10 m of an erbium-doped fiber (EDF) as a passive sensing element inside the Sagnac loop, taking advantage of the extra birefringence added by the presence of the doping elements. Using a standard interrogation method of simply tracing a interference peak, we were able to detect temperature variations with a sensitivity of up to 0.2 nm/°C and high linearity. The results demonstrate, for the first time, that the usage of an EDF as a totally passive element can be an interesting option to extend the range of parameter possibilities achievable for highly sensitive temperature sensors.

3.
Sensors (Basel) ; 21(13)2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34283124

ABSTRACT

This paper proposed a liquid level measurement and classification system based on a fiber Bragg grating (FBG) temperature sensor array. For the oil classification, the fluids were dichotomized into oil and nonoil, i.e., water and emulsion. Due to the low variability of the classes, the random forest (RF) algorithm was chosen for the classification. Three different fluids, namely water, mineral oil, and silicone oil (Kryo 51), were identified by three FBGs located at 21.5 cm, 10.5 cm, and 3 cm from the bottom. The fluids were heated by a Peltier device placed at the bottom of the beaker and maintained at a temperature of 318.15 K during the entire experiment. The fluid identification by the RF algorithm achieved an accuracy of 100%. An average root mean squared error (RMSE) of 0.2603 cm, with a maximum RMSE lower than 0.4 cm, was obtained in the fluid level measurement also using the RF algorithm. Thus, the proposed method is a feasible tool for fluid identification and level estimation under temperature variation conditions and provides important benefits in practical applications due to its easy assembly and straightforward operation.


Subject(s)
Water , Temperature
4.
Sensors (Basel) ; 19(13)2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31284380

ABSTRACT

In this paper, we report the development of a portable energy-efficient interrogator (Perrogator) for wavelength-based optical sensors. The interrogator is based on a compact solution encompassing a white light source and the spectral convolution between the sensor and a tunable filter, which is acquired by a photodetector, where a microcontroller has two functions: (i) To control the filter tuning and to (ii) acquire the photodetector signal. Then, the data is sent to a single-board computer for further signal processing. Furthermore, the employed single-board computer has a Wi-Fi module, which can be used to send the sensors data to the cloud. The proposed approach resulted in an interrogator with a resolution as high as 3.82 pm (for 15.64 nm sweeping range) and maximum acquisition frequency of about 210 Hz (with lower resolution ~15.30 pm). Perrogator was compared with a commercial fiber Bragg grating (FBG) interrogator for strain measurements and good agreement between both devices was found (1.226 pm/µÎµ for the commercial interrogator and 1.201 pm/µÎµ for the proposed approach with root mean square error of 0.0144 and 0.0153, respectively), where the Perrogator has the additional advantages of lower cost, higher portability and lower energy consumption. In order to demonstrate such advantages in conjunction with the high acquisition frequency allowed us to demonstrate two wearable applications using the proposed interrogation device over FBG and Fabry-Perot interferometer (FPI) sensors. In the first application, an FBG-embedded smart textile for knee angle assessment was used to analyze the gait of a healthy person. Due to the capability of reconstructing the FBG spectra, it was possible to employ a technique based on the FBG wavelength shift and reflectivity to decouple the effects of the bending angle and axial strain on the FBG response. The measurement of the knee angle as well as the estimation of the angular and axial displacements on the grating that can be correlated to the variations of the knee center of rotation were performed. In the second application, a FPI was embedded in a chest band for simultaneous measurement of breath and heart rates, where good agreement (error below 5%) was found with the reference sensors in all analyzed cases.


Subject(s)
Gait/physiology , Heart Rate Determination/instrumentation , Knee Joint/physiology , Signal Processing, Computer-Assisted , Wearable Electronic Devices , Equipment Design , Fiber Optic Technology/instrumentation , Heart Rate/physiology , Heart Rate Determination/methods , Humans , Interferometry/instrumentation , Respiration , Wireless Technology/instrumentation
5.
Res. Biomed. Eng. (Online) ; 34(1): 37-44, Jan.-Mar. 2018. graf
Article in English | LILACS | ID: biblio-896206

ABSTRACT

Abstract Introduction Polymer optical fibers (POF) are lightweight, present high elastic strain limits, fracture toughness, flexibility in bend, and are not influenced by electromagnetic fields. These characteristics enable the application of POF as curvature sensor and can overcome the limitations of the conventional technologies, especially for wearable and soft robotics devices. Nevertheless, POF based curvature sensors can suffer from environmental and light source power deviations. This paper presents a compensation technique for the environmental and light source power deviations in a POF curvature sensor. Methods The curvature sensor was submitted to variations of temperature, humidity and light source power to characterize the sensor response and evaluate the proposed compensation technique. In addition, tests with the simultaneous variation of the angle and light source power variation were performed. Results Results show that temperature and humidity effects do not lead to significative errors on the sensor measurement for wearable devices application, where a hardware-based compact and portable compensation technique of the light source deviation is applied. Moreover, the sensor with the compensation technique developed is compared with a potentiometer for dynamic measurements and the root-mean-square error of about 1° is obtained, which is lower than sensors based on similar operation principle presented in the literature and some commercially available devices. Conclusions The compensation technique proposed was able to compensate power deviations applied and resulted in a sensor with low errors with the additional advantages of compactness and low-cost, which enable its application as wearable sensors and on the instrumentation of wearable robots.

SELECTION OF CITATIONS
SEARCH DETAIL
...