Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(6)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37374153

ABSTRACT

Factor V (FV) Leiden and prothrombin G20210A are the most common hereditary thrombophilias. While their role in venous thromboembolism is well known, there are still uncertainties regarding their relationship with arterial thrombotic events, especially coronary ones. Our research, based on an in-depth analysis of the available literature, provides up-to-date information on the relationship between FV Leiden and prothrombin G20210A and acute myocardial infarction. FV Leiden and prothrombin G20210A screening should be implemented only in select cases, such as acute coronary syndrome in young individuals and/or in the absence of traditional cardiovascular risk factors and/or in the absence of significant coronary artery stenosis at angiography. Their identification should be followed by the implementation of optimal control of modifiable traditional cardiovascular risk factors to reduce the risk of recurrent events and genotyping and genetic counseling of all family members of affected cases for proper prophylaxis. An extended dual antiplatelet therapy (DAPT) may be considered, given the lower risk of bleeding under DAPT conferred by FV Leiden.

2.
Life (Basel) ; 13(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37109529

ABSTRACT

Despite the improvements in the treatment of coronary artery disease (CAD) and acute myocardial infarction (MI) over the past 20 years, ischemic heart disease (IHD) continues to be the most common cause of heart failure (HF). In clinical trials, over 70% of patients diagnosed with HF had IHD as the underlying cause. Furthermore, IHD predicts a worse outcome for patients with HF, leading to a substantial increase in late morbidity, mortality, and healthcare costs. In recent years, new pharmacological therapies have emerged for the treatment of HF, such as sodium-glucose cotransporter-2 inhibitors, angiotensin receptor-neprilysin inhibitors, selective cardiac myosin activators, and oral soluble guanylate cyclase stimulators, demonstrating clear or potential benefits in patients with HF with reduced ejection fraction. Interventional strategies such as cardiac resynchronization therapy, cardiac contractility modulation, or baroreflex activation therapy might provide additional therapeutic benefits by improving symptoms and promoting reverse remodeling. Furthermore, cardiac regenerative therapies such as stem cell transplantation could become a new therapeutic resource in the management of HF. By analyzing the existing data from the literature, this review aims to evaluate the impact of new HF therapies in patients with IHD in order to gain further insight into the best form of therapeutic management for this large proportion of HF patients.

3.
Life (Basel) ; 13(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36836800

ABSTRACT

Ischemia with nonobstructive coronary artery disease (INOCA) is increasingly recognized as a significant cause of angina, myocardial remodeling, and eventually heart failure (HF). Coronary microvascular dysfunction (CMD) is a major endotype of INOCA, and it is caused by structural and functional alterations of the coronary microcirculation. At the same time, atrial cardiomyopathy (ACM) defined by structural, functional, and electrical atrial remodeling has a major clinical impact due to its manifestations: atrial fibrillation (AF), atrial thrombosis, stroke, and HF symptoms. Both these pathologies share similar risk factors and have a high comorbidity burden. CMD causing INOCA and ACM frequently coexist. Thus, questions arise whether there is a potential link between these pathologies. Does CMD promote AF or the reverse? Which are the mechanisms that ultimately lead to CMD and ACM? Are both part of a systemic disease characterized by endothelial dysfunction? Lastly, which are the therapeutic strategies that can target endothelial dysfunction and improve the prognosis of patients with CMD and ACM? This review aims to address these questions by analyzing the existing body of evidence, offering further insight into the mechanisms of CMD and ACM, and discussing potential therapeutic strategies.

4.
Life (Basel) ; 14(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38255650

ABSTRACT

Chronic kidney disease represents a complex and multifaceted pathology characterized by the presence of structural or functional renal anomalies associated with a persistent reduction in renal function. As the disease progresses, complications arise due to the chronic inflammatory syndrome, hydro-electrolytic disorders, and toxicity secondary to the uremic environment. Cardiovascular complications are the leading cause of death for these patients. Ischemic cardiac pathology can be both a consequence and complication of chronic kidney disease, highlighting the need to identify specific cardiorenal dysfunction biomarkers targeting pathophysiological mechanisms common to both conditions. This identification is crucial for establishing accurate diagnoses, prognoses, and risk stratifications for patients. This work is intended to elucidate the intricate relationship between chronic kidney disease and ischemic heart disease and to investigate the roles of cardiorenal biomarkers, including cardiac troponin, natriuretic peptides, galectin-3, copeptin, fibroblast growth factor 23 and its co-receptor Klotho, soluble suppression of tumorigenicity 2, and plasma growth differentiation factor 15.

5.
Life (Basel) ; 12(8)2022 Jul 24.
Article in English | MEDLINE | ID: mdl-35892913

ABSTRACT

Myocardial infarction (MI) is the leading cause of death and morbidity worldwide, with an incidence relatively high in developed countries and rapidly growing in developing countries. The most common cause of MI is the rupture of an atherosclerotic plaque with subsequent thrombotic occlusion in the coronary circulation. This causes cardiomyocyte death and myocardial necrosis, with subsequent inflammation and fibrosis. Current therapies aim to restore coronary flow by thrombus dissolution with pharmaceutical treatment and/or intravascular stent implantation and to counteract neurohormonal activation. Despite these therapies, the injury caused by myocardial ischemia leads to left ventricular remodeling; this process involves changes in cardiac geometry, dimension and function and eventually progression to heart failure (HF). This review describes the pathophysiological mechanism that leads to cardiac remodeling and the therapeutic strategies with a role in slowing the progression of remodeling and improving cardiac structure and function.

SELECTION OF CITATIONS
SEARCH DETAIL
...