Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 51(4): 464-479, 2023 04.
Article in English | MEDLINE | ID: mdl-36653117

ABSTRACT

We report herein an in-depth analysis of the metabolism of the novel myeloperoxidase inhibitor AZD4831 ((R)-1-(2-(1-aminoethyl)-4-chlorobenzyl)-2-thioxo-2,3-dihydro-1H-pyrrolo[3,2-d]pyrimidin-4(5H)-one) in animals and human. Quantitative and qualitative metabolite profiling were performed on samples collected from mass balance studies in rats and humans. Exposure of circulating human metabolites with comparable levels in animal species used in safety assessment were also included. Structural characterization of 20 metabolites was performed by liquid chromatography high-resolution mass spectrometry, and quantification was performed by either 14C analysis using solid phase scintillation counting or accelerator mass spectrometry and, where available, authentication with synthesized metabolite standards. A complete mass balance study in rats is presented, while data from dogs and human are limited to metabolite profiling and characterization. The metabolism of AZD4831 is mainly comprised of reactions at the primary amine nitrogen and the thiourea sulfur, resulting in several conjugated metabolites with or without desulfurization. A carbamoyl glucuronide metabolite of AZD4831 (M7) was the most abundant plasma metabolite in both human healthy volunteers and heart failure patients after single and repeated dose administration of AZD4831, accounting for 75%-80% of the total drug-related exposure. Exposures to M7 and other human circulating metabolites were covered in rats and/or dogs, the two models most frequently used in the toxicology studies, and were also highly abundant in the mouse, the second model other than rat used in carcinogenicity studies. The carbamoyl glucuronide M7 was the main metabolite in rat bile, while a desulfurized and cyclized metabolite (M5) was abundant in rat plasma and excreta. SIGNIFICANCE STATEMENT: The biotransformation of AZD4831, a novel myeloperoxidase inhibitor inhibiting xanthine derivative bearing thiourea and primary aliphatic amine functions, is described. Twenty characterized metabolites demonstrate the involvement of carbamoylation with glucuronidation, desulfurization, and cyclization as main biotransformation reactions. The carbamoyl glucuronide was the main metabolite in human plasma, likely governed by a significant species difference in plasma protein binding for this metabolite, but this and other human plasma metabolites were covered in animals used in the toxicity studies.


Subject(s)
Glucuronides , Peroxidase , Humans , Rats , Mice , Animals , Dogs , Biotransformation , Chromatography, High Pressure Liquid , Amines
2.
J Pharm Sci ; 110(1): 422-431, 2021 01.
Article in English | MEDLINE | ID: mdl-33122050

ABSTRACT

3D cultures of primary human hepatocytes (PHH) are emerging as a more in vivo-like culture system than previously available hepatic models. This work describes the characterisation of drug metabolism in 3D PHH spheroids. Spheroids were formed from three different donors of PHH and the expression and activities of important cytochrome P450 enzymes (CYP1A2, 2B6, 2C9, 2D6, and 3A4) were maintained for up to 21 days after seeding. The activity of CYP2B6 and 3A4 decreased, while the activity of CYP2C9 and 2D6 increased over time (P < 0.05). For six test compounds, that are metabolised by multiple enzymes, intrinsic clearance (CLint) values were comparable to standard in vitro hepatic models and successfully predicted in vivo CLint within 3-fold from observed values for low clearance compounds. Remarkably, the metabolic turnover of these low clearance compounds was reproducibly measured using only 1-3 spheroids, each composed of 2000 cells. Importantly, metabolites identified in the spheroid cultures reproduced the major metabolites observed in vivo, both primary and secondary metabolites were captured. In summary, the 3D PHH spheroid model shows promise to be used in drug discovery projects to study drug metabolism, including unknown mechanisms, over an extended period of time.


Subject(s)
Cytochrome P-450 Enzyme System , Hepatocytes , Cytochrome P-450 Enzyme System/metabolism , Drug Evaluation , Hepatocytes/metabolism , Humans , Liver/metabolism , Metabolic Clearance Rate
3.
Xenobiotica ; 46(3): 234-40, 2016.
Article in English | MEDLINE | ID: mdl-26338168

ABSTRACT

1. Chemotherapy remains the effective way of controlling malaria infections. Many of the treatments have been rendered ineffective as a result of drug resistance by plasmodia species as well as toxicity. Molecular hybridisation is one of the techniques used in the synthesis of new-generation antimalarial techniques. In this paper, we explore some potential metabolic challenges associated with this technique. 2. In vitro metabolic clearance and metabolite identification were performed in cryopreserved hepatocytes. Reaction phenotyping and inhibition studies were conducted in human liver microsomes and recombinant cytochrome P450s (CYPs) 3. Metabolism in hepatocytes was not extensive with less than 25% of the hybrids being metabolised by contributing CYP enzymes. The hybrids were, however, potent inhibitors of CYPs 2C9 2C19 and 3A4. 4. Our data indicated that artemisinin-chloroquinoline hybrid both gained and lost favourable properties from the individual pharmacophoric units from which they were built. This highlights the challenges associated with the molecular hybridisation technique and a need to optimise the chemistry in an effort to maintain good properties while addressing new liabilities that arise.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Chloroquinolinols/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Drug Resistance , Hepatocytes/metabolism , Hepatocytes/radiation effects , Humans , Hydroxylation , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Models, Theoretical , Nonlinear Dynamics
4.
Rapid Commun Mass Spectrom ; 29(21): 2083-9, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26443410

ABSTRACT

RATIONALE: Structural information on metabolites obtained in relevant biological systems can have considerable impact on the design of new drug candidates. However, with demanding turnaround times, the amount of available structural information may become rate limiting. METHODS: The workflow for metabolite identification used in our laboratory was compared to a workflow using a software tool built for computer-assisted metabolite identification. The present study covered the in vitro metabolism of a diverse set of 65 in-house compounds. The compounds were profiled across three liver-based systems, 17 compounds were tested in human liver microsomes (HLM), 12 in rat hepatocytes (RHEP), and 36 in human hepatocytes (HHEP). RESULTS: For 92% of the metabolites reported, the exact match or Markush representations were in agreement between the two workflows. The major specific biotransformations in hepatocytes which formed the metabolites were aromatic or aliphatic hydroxylations (33%), N-dealkylations (15%) and glucuronidations (12%). CONCLUSIONS: The software was shown to perform well for structural elucidation of metabolites from both phase I and phase II metabolism where the focus was on quickly understanding the rate-limiting metabolic step(s).


Subject(s)
Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Software , Animals , Drug Discovery , Hepatocytes/metabolism , Humans , Microsomes, Liver/metabolism , Molecular Structure , Rats
5.
Rapid Commun Mass Spectrom ; 24(21): 3127-38, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20941759

ABSTRACT

The identification of metabolites is almost exclusively done with liquid chromatography/tandem mass spectrometry (LC/MSMS) and despite the enormous progress in the development of these techniques and software for handling of data this is a time-consuming task. In this study the use of quadrupole time-of-flight (QTOF)-generated MS(E) and MS/MS data were compared with respect to rationalization of metabolites. In addition Mass-MetaSite, a semi-automated software for metabolite identification, was evaluated. The program combines the information from MS raw data, in the form of collision-induced dissociation spectra, with a prediction of the site of metabolism in order to assign the structure of a metabolite. The aim of the software is to mimic the rationalization of fragment ions performed by a biotransformation scientist in the process of structural elucidation. For this evaluation, metabolite identification in human liver microsomes was accomplished for 19 commercially available compounds and 15 in-house compounds. The results were very encouraging and for 96% of the metabolites the same structures were assigned using MS(E) compared with MSMS acquired data. The possibility of using MS(E) could considerably reduce the analysis time. Moreover, Mass-MetaSite performed well and the correct assigned structure, compared to manual inspection of the data, was picked in the first rank in ∼80% of the cases. In conclusion MS(E) could be successfully used for metabolite identification in order to reduce time of analysis and Mass-MetaSite could alleviate the work of a biotransformation scientist and decrease the workload by assigning the structure for a majority of the metabolites.


Subject(s)
Chromatography, Liquid/methods , Software , Tandem Mass Spectrometry/methods , Biotransformation , Computer Simulation , Humans , Microsomes, Liver/metabolism , Models, Chemical , Molecular Conformation , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...