Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 15(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38790197

ABSTRACT

Currently, more than 55 million people around the world suffer from dementia, and Alzheimer's Disease and Related Dementias (ADRD) accounts for nearly 60-70% of all those cases. The spread of Alzheimer's Disease (AD) pathology and progressive neurodegeneration in the hippocampus and cerebral cortex is strongly correlated with cognitive decline in AD patients; however, the molecular underpinning of ADRD's causality is still unclear. Studies of postmortem AD brains and animal models of AD suggest that elevated endoplasmic reticulum (ER) stress may have a role in ADRD pathology through altered neurocellular homeostasis in brain regions associated with learning and memory. To study the ER stress-associated neurocellular response and its effects on neurocellular homeostasis and neurogenesis, we modeled an ER stress challenge using thapsigargin (TG), a specific inhibitor of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), in the induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) of two individuals from our Mexican American Family Study (MAFS). High-content screening and transcriptomic analysis of the control and ER stress-challenged NSCs showed that the NSCs' ER stress response resulted in a significant decline in NSC self-renewal and an increase in apoptosis and cellular oxidative stress. A total of 2300 genes were significantly (moderated t statistics FDR-corrected p-value ≤ 0.05 and fold change absolute ≥ 2.0) differentially expressed (DE). The pathway enrichment and gene network analysis of DE genes suggests that all three unfolded protein response (UPR) pathways, protein kinase RNA-like ER kinase (PERK), activating transcription factor-6 (ATF-6), and inositol-requiring enzyme-1 (IRE1), were significantly activated and cooperatively regulated the NSCs' transcriptional response to ER stress. Our results show that IRE1/X-box binding protein 1 (XBP1) mediated transcriptional regulation of the E2F transcription factor 1 (E2F1) gene, and its downstream targets have a dominant role in inducing G1/S-phase cell cycle arrest in ER stress-challenged NSCs. The ER stress-challenged NSCs also showed the activation of C/EBP homologous protein (CHOP)-mediated apoptosis and the dysregulation of synaptic plasticity and neurotransmitter homeostasis-associated genes. Overall, our results suggest that the ER stress-associated attenuation of NSC self-renewal, increased apoptosis, and dysregulated synaptic plasticity and neurotransmitter homeostasis plausibly play a role in the causation of ADRD.


Subject(s)
Alzheimer Disease , Endoplasmic Reticulum Stress , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Induced Pluripotent Stem Cells/metabolism , Thapsigargin/pharmacology , Dementia/genetics , Dementia/metabolism , Dementia/pathology , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Male , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , Neurogenesis , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Female , Unfolded Protein Response , Transcription Factor CHOP
2.
Cells ; 13(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474333

ABSTRACT

A large portion of the heterogeneity in coronavirus disease 2019 (COVID-19) susceptibility and severity of illness (SOI) remains poorly understood. Recent evidence suggests that SARS-CoV-2 infection-associated damage to alveolar epithelial type 2 cells (AT2s) in the distal lung may directly contribute to disease severity and poor prognosis in COVID-19 patients. Our in vitro modeling of SARS-CoV-2 infection in induced pluripotent stem cell (iPSC)-derived AT2s from 10 different individuals showed interindividual variability in infection susceptibility and the postinfection cellular viral load. To understand the underlying mechanism of the AT2's capacity to regulate SARS-CoV-2 infection and cellular viral load, a genome-wide differential gene expression analysis between the mock and SARS-CoV-2 infection-challenged AT2s was performed. The 1393 genes, which were significantly (one-way ANOVA FDR-corrected p ≤ 0.05; FC abs ≥ 2.0) differentially expressed (DE), suggest significant upregulation of viral infection-related cellular innate immune response pathways (p-value ≤ 0.05; activation z-score ≥ 3.5), and significant downregulation of the cholesterol- and xenobiotic-related metabolic pathways (p-value ≤ 0.05; activation z-score ≤ -3.5). Whilst the effect of post-SARS-CoV-2 infection response on the infection susceptibility and postinfection viral load in AT2s is not clear, interestingly, pre-infection (mock-challenged) expression of 238 DE genes showed a high correlation with the postinfection SARS-CoV-2 viral load (FDR-corrected p-value ≤ 0.05 and r2-absolute ≥ 0.57). The 85 genes whose expression was negatively correlated with the viral load showed significant enrichment in viral recognition and cytokine-mediated innate immune GO biological processes (p-value range: 4.65 × 10-10 to 2.24 × 10-6). The 153 genes whose expression was positively correlated with the viral load showed significant enrichment in cholesterol homeostasis, extracellular matrix, and MAPK/ERK pathway-related GO biological processes (p-value range: 5.06 × 10-5 to 6.53 × 10-4). Overall, our results strongly suggest that AT2s' pre-infection innate immunity and metabolic state affect their susceptibility to SARS-CoV-2 infection and viral load.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Humans , SARS-CoV-2 , Viral Load , Immunity, Innate , Cholesterol
3.
G3 (Bethesda) ; 12(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34751383

ABSTRACT

The gray short-tailed opossum (Monodelphis domestica) is an established laboratory-bred marsupial model for biomedical research. It is a critical species for comparative genomics research, providing the pivotal phylogenetic outgroup for studies of derived vs ancestral states of genomic/epigenomic characteristics for eutherian mammal lineages. To characterize the current genetic profile of this laboratory marsupial, we examined 79 individuals from eight established laboratory strains. Double digest restriction site-associated DNA sequencing and whole-genome resequencing experiments were performed to investigate the genetic architecture in these strains. A total of 66,640 high-quality single nucleotide polymorphisms (SNPs) were identified. We analyzed SNP density, average heterozygosity, nucleotide diversity, and population differentiation parameter Fst within and between the eight strains. Principal component and population structure analysis clearly resolve the strains at the level of their ancestral founder populations, and the genetic architecture of these strains correctly reflects their breeding history. We confirmed the successful establishment of the first inbred laboratory opossum strain LSD (inbreeding coefficient F > 0.99) and a nearly inbred strain FD2M1 (0.98 < F < 0.99), each derived from a different ancestral background. These strains are suitable for various experimental protocols requiring controlled genetic backgrounds and for intercrosses and backcrosses that can generate offspring with informative SNPs for studying a variety of genetic and epigenetic processes. Together with recent advances in reproductive manipulation and CRISPR/Cas9 techniques for Monodelphis domestica, the existence of distinctive inbred strains will enable genome editing on different genetic backgrounds, greatly expanding the utility of this marsupial model for biomedical research.


Subject(s)
Monodelphis , Animals , Genome , Genomics , Humans , Laboratories , Monodelphis/genetics , Phylogeny
4.
Int J Mol Sci ; 22(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805011

ABSTRACT

The in vitro modeling of cardiac development and cardiomyopathies in human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) provides opportunities to aid the discovery of genetic, molecular, and developmental changes that are causal to, or influence, cardiomyopathies and related diseases. To better understand the functional and disease modeling potential of iPSC-differentiated CMs and to provide a proof of principle for large, epidemiological-scale disease gene discovery approaches into cardiomyopathies, well-characterized CMs, generated from validated iPSCs of 12 individuals who belong to four sibships, and one of whom reported a major adverse cardiac event (MACE), were analyzed by genome-wide mRNA sequencing. The generated CMs expressed CM-specific genes and were highly concordant in their total expressed transcriptome across the 12 samples (correlation coefficient at 95% CI =0.92 ± 0.02). The functional annotation and enrichment analysis of the 2116 genes that were significantly upregulated in CMs suggest that generated CMs have a transcriptomic and functional profile of immature atrial-like CMs; however, the CMs-upregulated transcriptome also showed high overlap and significant enrichment in primary cardiomyocyte (p-value = 4.36 × 10-9), primary heart tissue (p-value = 1.37 × 10-41) and cardiomyopathy (p-value = 1.13 × 10-21) associated gene sets. Modeling the effect of MACE in the generated CMs-upregulated transcriptome identified gene expression phenotypes consistent with the predisposition of the MACE-affected sibship to arrhythmia, prothrombotic, and atherosclerosis risk.


Subject(s)
Cardiomyopathies/genetics , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Cardiomyopathies/metabolism , Cell Differentiation/genetics , Cell Lineage , Cryopreservation , Gene Expression Profiling , Gene Expression Regulation , Genetic Association Studies , Humans , Lymphocytes/cytology , Phenotype , RNA, Messenger/metabolism , Risk , Transcriptome
5.
Circ Genom Precis Med ; 14(3): e003232, 2021 06.
Article in English | MEDLINE | ID: mdl-33887960

ABSTRACT

BACKGROUND: The identification and understanding of therapeutic targets for atherosclerotic cardiovascular disease is of fundamental importance given its global health and economic burden. Inhibition of ANGPTL3 (angiopoietin-like 3) has demonstrated a cardioprotective effect, showing promise for atherosclerotic cardiovascular disease treatment, and is currently the focus of ongoing clinical trials. Here, we assessed the genetic basis of variation in ANGPTL3 levels in the San Antonio Family Heart Study. METHODS: We assayed ANGPTL3 protein levels in ≈1000 Mexican Americans from extended pedigrees. By drawing upon existing plasma lipidome profiles and genomic data we conducted analyses to understand the genetic basis to variation in ANGPTL3 protein levels, and accordingly the correlation with the plasma lipidome. RESULTS: In a variance components framework, we identified that variation in ANGPTL3 was significantly heritable (h2=0.33, P=1.31×10-16). To explore the genetic basis of this heritability, we conducted a genome-wide linkage scan and identified significant linkage (logarithm of odds =6.18) to a locus on chromosome 1 at 90 centimorgans, corresponding to the ANGPTL3 gene location. In the genomes of 23 individuals from a single pedigree, we identified a loss-of-function variant, rs398122988 (N121Kfs*2), in ANGPTL3, that was significantly associated with lower ANGPTL3 levels (ß=-1.69 SD units, P=3.367×10-13), and accounted for the linkage signal at this locus. Given the known role of ANGPTL3 as an inhibitor of endothelial and lipoprotein lipase, we explored the association of ANGPTL3 protein levels and rs398122988 with the plasma lipidome and related phenotypes, identifying novel associations with phosphatidylinositols. CONCLUSIONS: Variation in ANGPTL3 protein levels is heritable and under significant genetic control. Both ANGPTL3 levels and loss-of-function variants in ANGPTL3 have significant associations with the plasma lipidome. These findings further our understanding of ANGPTL3 as a therapeutic target for atherosclerotic cardiovascular disease.


Subject(s)
Angiopoietin-Like Protein 3 , Atherosclerosis , Loss of Function Mutation , Mexican Americans , Phosphatidylinositols , Adult , Angiopoietin-Like Protein 3/blood , Angiopoietin-Like Protein 3/genetics , Atherosclerosis/blood , Atherosclerosis/genetics , Female , Humans , Lipidomics , Male , Middle Aged , Phosphatidylinositols/blood , Phosphatidylinositols/genetics
6.
Int J Mol Sci ; 21(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977388

ABSTRACT

miRNA regulates the expression of protein coding genes and plays a regulatory role in human development and disease. The human iPSCs and their differentiated progenies provide a unique opportunity to identify these miRNA-mediated regulatory mechanisms. To identify miRNA-mRNA regulatory interactions in human nervous system development, well characterized NSCs were differentiated from six validated iPSC lines and analyzed for differentially expressed (DE) miRNome and transcriptome by RNA sequencing. Following the criteria, moderated t statistics, FDR-corrected p-value ≤ 0.05 and fold change-absolute (FC-abs) ≥2.0, 51 miRNAs and 4033 mRNAs were found to be significantly DE between iPSCs and NSCs. The miRNA target prediction analysis identified 513 interactions between 30 miRNA families (mapped to 51 DE miRNAs) and 456 DE mRNAs that were paradoxically oppositely expressed. These 513 interactions were highly enriched in nervous system development functions (154 mRNAs; FDR-adjusted p-value range: 8.06 × 10-15-1.44 × 10-4). Furthermore, we have shown that the upregulated miR-10a-5p, miR-30c-5p, miR23-3p, miR130a-3p and miR-17-5p miRNA families were predicted to down-regulate several genes associated with the differentiation of neurons, neurite outgrowth and synapse formation, suggesting their role in promoting the self-renewal of undifferentiated NSCs. This study also provides a comprehensive characterization of iPSC-generated NSCs as dorsal neuroepithelium, important for their potential use in in vitro modeling of human brain development and disease.


Subject(s)
Cell Differentiation , Gene Expression Regulation , Induced Pluripotent Stem Cells/metabolism , MicroRNAs , Neural Stem Cells/metabolism , RNA, Messenger , RNA-Seq , Humans , MicroRNAs/biosynthesis , MicroRNAs/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
7.
Am J Stem Cells ; 8(2): 28-37, 2019.
Article in English | MEDLINE | ID: mdl-31523484

ABSTRACT

A large number of Epstein Barr virus (EBV) immortalized lymphoblastoid cell lines (LCLs) have been generated and maintained in genetic/epidemiological studies as a perpetual source of DNA and as a surrogate in vitro cell model. Recent successes in reprograming LCLs into induced pluripotent stem cells (iPSCs) has paved the way to generate more relevant in vitro disease models using this existing bioresource. However, the latent EBV infection in the LCLs make them a unique cell type by altering expression of many cellular genes and miRNAs. These EBV induced changes in the LCL miRNome and transcriptome are reversed upon reprogramming into iPSCs, which allows a unique opportunity to better understand the miRNA and mRNA interactions that are EBV induced in LCLs and the changes that takes place during iPSC reprogramming. To identify the potential miRNA-mRNA interactions and better understand their role in regulating the cellular transitions in LCLs and their reprogrammed iPSCs, we performed a parallel genome-wide miRNA and mRNA expression analysis in six LCLs and their reprogrammed iPSCs. A total of 85 miRNAs and 5,228 mRNAs were significantly differentially expressed (DE). The target prediction of the DE miRNAs using TargetScan-Human, TarBase and miRecords databases identified 1,842 mRNA targets that were DE between LCLs and their reprogrammed iPSCs. The functional annotation, upstream regulator and gene expression analysis of the predicted DE mRNA targets suggest the role of DE miRNAs in regulating EBV induced changes in LCLs and self-renewal, pluripotency and differentiation in iPSCs.

8.
J Lipid Res ; 60(9): 1630-1639, 2019 09.
Article in English | MEDLINE | ID: mdl-31227640

ABSTRACT

The de novo ceramide synthesis pathway is essential to human biology and health, but genetic influences remain unexplored. The core function of this pathway is the generation of biologically active ceramide from its precursor, dihydroceramide. Dihydroceramides have diverse, often protective, biological roles; conversely, increased ceramide levels are biomarkers of complex disease. To explore the genetics of the ceramide synthesis pathway, we searched for deleterious nonsynonymous variants in the genomes of 1,020 Mexican Americans from extended pedigrees. We identified a Hispanic ancestry-specific rare functional variant, L175Q, in delta 4-desaturase, sphingolipid 1 (DEGS1), a key enzyme in the pathway that converts dihydroceramide to ceramide. This amino acid change was significantly associated with large increases in plasma dihydroceramides. Indexes of DEGS1 enzymatic activity were dramatically reduced in heterozygotes. CRISPR/Cas9 genome editing of HepG2 cells confirmed that the L175Q variant results in a partial loss of function for the DEGS1 enzyme. Understanding the biological role of DEGS1 variants, such as L175Q, in ceramide synthesis may improve the understanding of metabolic-related disorders and spur ongoing research of drug targets along this pathway.


Subject(s)
Ceramides/biosynthesis , Fatty Acid Desaturases/genetics , Blotting, Western , CRISPR-Cas Systems/genetics , Ceramides/metabolism , Female , Genotype , Hep G2 Cells , Humans , Male , Mexican Americans
9.
Hum Brain Mapp ; 40(14): 4180-4191, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31187567

ABSTRACT

White matter microstructure is affected by immune system activity via the actions of circulating pro-inflammatory cytokines. Although white matter microstructure and inflammatory measures are significantly heritable, it is unclear if overlapping genetic factors influence these traits in humans. We conducted genetic correlation analyses of these traits using randomly ascertained extended pedigrees from the Genetics of Brain Structure and Function Study (N = 1862, 59% females, ages 18-97 years; 42 ± 15.7). White matter microstructure was assessed using fractional anisotropy (FA) calculated from diffusion tensor imaging (DTI). Circulating levels (pg/mL) of pro-inflammatory cytokines (IL-6, IL-8, and TNFα) phenotypically associated with white matter microstructure were quantified from blood serum. All traits were significantly heritable (h2 ranging from 0.41 to 0.66 for DTI measures and from 0.18 to 0.30 for inflammatory markers). Phenotypically, higher levels of circulating inflammatory markers were associated with lower FA values across the brain (r = -.03 to r = -.17). There were significant negative genetic correlations between most DTI measures and IL-8 and TNFα, although effects for TNFα were no longer significant when covarying for body mass index. Genetic correlations between DTI measures and IL-6 were not significant. Understanding the genetic correlation between specific inflammatory markers and DTI measures may help researchers focus questions related to inflammatory processes and brain structure.


Subject(s)
Cerebral Cortex/anatomy & histology , Cytokines/genetics , Inflammation/genetics , Inheritance Patterns , White Matter/anatomy & histology , Adolescent , Adult , Aged , Aged, 80 and over , Anisotropy , Cytokines/blood , Diffusion Tensor Imaging , Female , Genotype , Humans , Male , Middle Aged , Phenotype , Young Adult
10.
Tuberculosis (Edinb) ; 93 Suppl: S51-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24388650

ABSTRACT

Mycobacterium tuberculosis (Mtb) is the causative agent of human tuberculosis (TB) with an estimated 8.8 million new TB cases and 1.4 million deaths annually. Tuberculosis is the leading cause of death in AIDS patients worldwide but very little is known about early TB infection or TB/HIV co-infection in infants. A clinically relevant newborn animal model to study TB infection is urgently needed. We have successfully established an aerosol newborn/infant model in neonatal nonhuman primates (NHPs) that mimics clinical and bacteriological characteristics of Mtb infection as seen in human newborns/infants. Further, this model will allow the establishment of a TB coinfection model of pediatric AIDS. Aerosol versus intra broncho-alveolar Mtb infection was studied. Interestingly, 42 days post infection specific lesions were detected suggestive of the classic Ghon focus in human children. Concurrently, specific cellular immune responses developed 4-6 weeks after Mtb infection. Using the enzyme-linked immunospot (ELISPOT) assays, we found that IL-12 production correlated with early Mtb infection lesions seen by routine thoracic radiographs. Overall, this work represents the first example of early Mtb infection of newborn macaques. This study gives us a unique opportunity to further characterize immunopathogenesis and establish a TB/SIV co-infection model for pediatric AIDS.


Subject(s)
Antigens, Bacterial/immunology , Coinfection/immunology , Interleukin-12/immunology , Mycobacterium tuberculosis , Simian Acquired Immunodeficiency Syndrome/immunology , Tuberculosis, Pulmonary/immunology , Adaptive Immunity , Administration, Inhalation , Animals , Animals, Newborn , Body Temperature , Body Weight , Coinfection/pathology , Disease Models, Animal , Enzyme-Linked Immunospot Assay , Flow Cytometry , Immunity, Cellular , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/pathology , Tuberculosis, Pulmonary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...