Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 37(7): 110014, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34788607

ABSTRACT

Mutations of SHANK3 cause Phelan-McDermid syndrome (PMS), and these individuals can exhibit sensitivity to stress, resulting in behavioral deterioration. Here, we examine the interaction of stress with genotype using a mouse model with face validity to PMS. In Shank3ΔC/+ mice, swim stress produces an altered transcriptomic response in pyramidal neurons that impacts genes and pathways involved in synaptic function, signaling, and protein turnover. Homer1a, which is part of the Shank3-mGluR-N-methyl-D-aspartate (NMDA) receptor complex, is super-induced and is implicated in the stress response because stress-induced social deficits in Shank3ΔC/+ mice are mitigated in Shank3ΔC/+;Homer1a-/- mice. Several lines of evidence demonstrate that Shank3 expression is regulated by Homer1a in competition with crosslinking forms of Homer, and consistent with this model, Shank3 expression and function that are reduced in Shank3ΔC/+ mice are rescued in Shank3ΔC/+;Homer1a-/- mice. Studies highlight the interaction between stress and genetics and focus attention on activity-dependent changes that may contribute to pathogenesis.


Subject(s)
Homer Scaffolding Proteins/metabolism , Nerve Tissue Proteins/metabolism , Stress, Psychological/metabolism , Animals , Chromosome Deletion , Chromosome Disorders/metabolism , Chromosome Disorders/physiopathology , Chromosomes, Human, Pair 22/metabolism , Disease Models, Animal , Gene Expression/genetics , Gene Expression Regulation/genetics , Homer Scaffolding Proteins/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Phenotype , Pyramidal Cells/metabolism , Stress, Psychological/physiopathology
2.
Biol Psychiatry ; 89(11): 1058-1072, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33353667

ABSTRACT

BACKGROUND: The serine-threonine kinase mTORC1 (mechanistic target of rapamycin complex 1) is essential for normal cell function but is aberrantly activated in the brain in both genetic-developmental and sporadic diseases and is associated with a spectrum of neuropsychiatric symptoms. The underlying molecular mechanisms of cognitive and neuropsychiatric symptoms remain controversial. METHODS: The present study examines behaviors in transgenic models that express Rheb, the most proximal known activator of mTORC1, and profiles striatal phosphoproteomics in a model with persistently elevated mTORC1 signaling. Biochemistry, immunohistochemistry, electrophysiology, and behavior approaches are used to examine the impact of persistently elevated mTORC1 on D1 dopamine receptor (D1R) signaling. The effect of persistently elevated mTORC1 was confirmed using D1-Cre to elevate mTORC1 activity in D1R neurons. RESULTS: We report that persistently elevated mTORC1 signaling blocks canonical D1R signaling that is dependent on DARPP-32 (dopamine- and cAMP-regulated neuronal phosphoprotein). The immediate downstream effector of mTORC1, ribosomal S6 kinase 1 (S6K1), phosphorylates and activates DARPP-32. Persistent elevation of mTORC1-S6K1 occludes dynamic D1R signaling downstream of DARPP-32 and blocks multiple D1R responses, including dynamic gene expression, D1R-dependent corticostriatal plasticity, and D1R behavioral responses including sociability. Candidate biomarkers of mTORC1-DARPP-32 occlusion are increased in the brain of human disease subjects in association with elevated mTORC1-S6K1, supporting a role for this mechanism in cognitive disease. CONCLUSIONS: The mTORC1-S6K1 intersection with D1R signaling provides a molecular framework to understand the effects of pathological mTORC1 activation on behavioral symptoms in neuropsychiatric disease.


Subject(s)
Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Mechanistic Target of Rapamycin Complex 1 , Receptors, Dopamine D1/metabolism , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction , Humans , Phosphorylation , TOR Serine-Threonine Kinases/metabolism
3.
Sci Rep ; 7(1): 2558, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28566772

ABSTRACT

Extracellular vesicles (EVs) are involved in intercellular communication and affect processes including immune and antiviral responses. Blood serum, a common cell culture medium component, is replete with EVs and must be depleted prior to EV-related experiments. The extent to which depletion processes deplete non-EV particles is incompletely understood, but depleted serum is associated with reduced viability and growth in cell culture. Here, we examined whether serum depleted by two methods affected HIV-1 replication. In cell lines, including HIV-1 latency models, increased HIV-1 production was observed, along with changes in cell behavior and viability. Add-back of ultracentrifuge pellets (enriched in EVs but possibly other particles) rescued baseline HIV-1 production. Primary cells were less sensitive to serum depletion processes. Virus produced under processed serum conditions was more infectious. Finally, changes in cellular metabolism, surface markers, and gene expression, but not miRNA profiles, were associated with depleted serum culture. In conclusion, depleted serum conditions have a substantial effect on HIV-1 production and infectivity. Dependence of cell cultures on "whole serum" must be examined carefully along with other experimental variables, keeping in mind that the effects of EVs may be accompanied by or confused with those of closely associated or physically similar particles.


Subject(s)
Extracellular Vesicles/genetics , HIV-1/genetics , MicroRNAs/genetics , Serum/chemistry , Cell Communication/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Culture Media/chemistry , Culture Media/metabolism , Extracellular Vesicles/metabolism , Gene Expression Regulation, Viral/drug effects , Humans , Virus Replication/drug effects , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...