Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JAMA Facial Plast Surg ; 18(3): 194-200, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26868130

ABSTRACT

IMPORTANCE: The contribution of columellar strut grafts (CSGs) to nasal tip support has not been determined via structural mechanics. Optimal graft dimensions have yet to be objectively determined. OBJECTIVES: To use a finite element model (FEM) of the human nose to (1) determine the effect of the CSG on nasal tip support and (2) identify how suture placement contributes to tip support. DESIGN, SETTING, AND PARTICIPANTS: A multiple-component FEM of the human nose consisting of bone, skin/soft tissue, and cartilage was rendered from a computed tomographic scan. Then, CSGs of varying sizes were created, ranging from 15 × 4 × 1 mm to 25 × 8 × 1 mm, and placed in the model between the medial crura. Two FEMs were constructed for each strut size: (1) CSGs that were physically attached to the nasal spine, medial crura, and caudal septum and (2) CSGs that were not in direct contact with these structures and free to move within the soft tissue. A control model was also constructed wherein no graft was placed. MAIN OUTCOMES AND MEASURES: Nasal tip support for each model was assessed, and the resultant distribution of von Mises stress, reaction force, and strain energy density with respect to the alar cartilages were calculated. RESULTS: Compared with the control, the reaction force increased with increasing strut volume, while the strain energy density (calculated over the alar cartilages) generally decreased with increasing CSG volume. Simulations with struts that had suture attachments along the entire length of the graft generated a larger reaction force than the models without any suture attachments. Models with anteriorly placed sutures generated reaction forces similar to that of the fully sutured model, whereas the models with posterior sutures showed reaction forces similar to the fully disconnected model. CONCLUSIONS AND RELEVANCE: Insertion of CSGs does effect the amount of force the nasal tip can withstand post rhinoplasty. Moreover, anteriorly placed sutures incur reaction forces similar to struts that are fully connected to the alar cartilage. Thus, our simulations are congruent with clinical practice in that stability increases with graft size and fixation, and that sutures should be placed along either the entire CSG or the anterior most portion for optimal support. LEVEL OF EVIDENCE: NA.


Subject(s)
Nasal Septum/transplantation , Rhinoplasty/methods , Finite Element Analysis , Humans , Nasal Septum/surgery , Nose/surgery , Suture Techniques , Transplantation, Autologous
2.
JAMA Facial Plast Surg ; 18(2): 136-43, 2016.
Article in English | MEDLINE | ID: mdl-26720757

ABSTRACT

IMPORTANCE: Computational modeling can be used to mimic the forces acting on the nasal framework that lead to the inverted-V deformity (IVD) after surgery and potentially determine long-range outcomes. OBJECTIVE: To demonstrate the use of the finite element method (FEM) to predict the formation of the IVD after separation of the upper lateral cartilages (ULCs) from the nasal septum. DESIGN, SETTING, AND PARTICIPANTS: A computer model of a nose was derived from human computed tomographic data. The septum and upper and lower lateral cartilages were designed to fit within the soft-tissue envelope using computer-aided design software. Mechanical properties were obtained from the literature. The 3 simulations created included (1) partial fusion of the ULCs to the septum, (2) separation of the ULCs from the septum, and (3) a fully connected model to serve as a control. Forces caused by wound healing were prescribed at the junction of the disarticulated ULCs and septum. Using FEM software, equilibrium stress and strain were calculated. Displacement of the soft tissue along the nasal dorsum was measured and evaluated for evidence of morphologic change consistent with the IVD. MAIN OUTCOME AND MEASURES: Morphologic changes on the computer models in response to each simulation. RESULTS: When a posteroinferior force vector was applied along the nasal dorsum, the areas of highest stress were along the medial edge of the ULCs and at the junction of the ULCs and the nasal bones. With full detachment of ULCs and the dorsal septum, the characteristic IVD was observed. Both separation FEMs produced a peak depression of 0.3 mm along the nasal dorsum. CONCLUSIONS AND RELEVANCE: The FEM can be used to simulate the long-term structural complications of a surgical maneuver in rhinoplasty, such as the IVD. When applied to other rhinoplasty maneuvers, the use of FEMs may be useful to simulate the long-term outcomes, particularly when long-term clinical results are not available. In the future, use of FEMs may simulate rhinoplasty results beyond simply morphing the outer contours of the nose and allow estimation of potentially long-term clinical outcomes that may not be readily apparent. LEVEL OF EVIDENCE: NA.


Subject(s)
Computer Simulation , Finite Element Analysis , Models, Anatomic , Nasal Cartilages/surgery , Nasal Septum/surgery , Postoperative Complications/prevention & control , Rhinoplasty/methods , Biomechanical Phenomena , Computer-Aided Design , Humans , Nasal Cartilages/diagnostic imaging , Nasal Septum/diagnostic imaging , Tomography, X-Ray Computed
3.
JAMA Facial Plast Surg ; 17(6): 413-20, 2015.
Article in English | MEDLINE | ID: mdl-26427012

ABSTRACT

IMPORTANCE: Alar rim retraction is the most common unintended consequence of tissue remodeling that results from overresection of the cephalic lateral crural cartilage; however, the complex tissue remodeling process that produces this shape change is not well understood. OBJECTIVES: To simulate how resection of cephalic trim alters the stress distribution within the human nose in response to tip depression (palpation) and to simulate the internal forces generated after cephalic trim that may lead to alar rim retraction cephalically and upward rotation of the nasal tip. DESIGN, SETTING, AND PARTICIPANTS: A multicomponent finite element model was derived from maxillofacial computed tomography with 1-mm axial resolution. The 3-dimensional editing function in the medical imaging software was used to trim the cephalic portion of the lower lateral cartilage to emulate that performed in typical rhinoplasty. Three models were created: a control, a conservative trim, and an aggressive trim. Each simulated model was imported to a software program that performs mechanical simulations, and material properties were assigned. First, nasal tip depression (palpation) was simulated, and the resulting stress distribution was calculated for each model. Second, long-term tissue migration was simulated on conservative and aggressive trim models by placing normal and shear force vectors along the caudal and cephalic borders of the tissue defect. RESULTS: The von Mises stress distribution created by a 5-mm tip depression revealed consistent findings among all 3 simulations, with regions of high stress being concentrated to the medial portion of the intermediate crus and the caudal septum. Nasal tip reaction force marginally decreased as more lower lateral cartilage tissue was resected. Conservative and aggressive cephalic trim models produced some degree of alar rim retraction and tip rotation, which increased with the magnitude of the force applied to the region of the tissue defect. CONCLUSIONS AND RELEVANCE: Cephalic trim was performed on a computerized composite model of the human nose to simulate conservative and aggressive trims. Internal forces were applied to each model to emulate the tissue migration that results from decades of wound healing. Our simulations reveal that the degree of tip rotation and alar rim retraction is dependent on the amount of cartilage that was resected owing to cephalic trim. Tip reaction force is marginally reduced with increasing tissue volume resection. LEVEL OF EVIDENCE: NA.


Subject(s)
Finite Element Analysis , Models, Biological , Nasal Cartilages/surgery , Nasal Septum/surgery , Rhinoplasty , Biomechanical Phenomena , Humans , Nasal Cartilages/physiopathology , Nasal Septum/physiopathology , Rhinoplasty/adverse effects , Rhinoplasty/methods , Tomography, X-Ray Computed
4.
Laryngoscope ; 125(2): 326-30, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25130506

ABSTRACT

OBJECTIVE: We employ a nasal tip finite element model (FEM) to evaluate contributions of two of the three major tip support mechanisms: attachments between the upper and lower lateral cartilages and attachment of the medial crura to the caudal septum. STUDY DESIGN: The nasal tip FEM computed stress distribution and strain energy density (SED) during nasal tip compression. We examined the impact of attachments between the upper and lower lateral cartilages and the attachment of the medial crura to the caudal septum on nasal tip support. METHODS: The FEM consisted of three tissue components: bone, cartilage, and skin. Four models were created: A) control model with attachments present at the scroll and caudal septum; B) simulated disruption of scroll; C) simulated disruption of medial crura attachments to caudal septum; and D) simulated disruption of scroll and medial crura attachments to caudal septum. Spatial distribution of stress and SED were calculated. RESULTS: The keystone, intermediate crura, caudal septum, and nasal spine demonstrated high concentration of stress distribution. Across all models, there was no difference in stress distribution. Disruption of the scroll resulted in 1% decrease in SED. Disruption of the medial crura attachments to the caudal septum resulted in 4.2% reduction in SED. Disruption of both scroll and medial crural attachments resulted in 9.1% reduction in SED. CONCLUSION: The nasal tip FEM is an evolving tool to study structural nasal tip dynamics and demonstrates the loss of nasal tip support with disruption of attachments at the scroll and nasal base. LEVEL OF EVIDENCE: N/A.


Subject(s)
Computer-Aided Design , Rhinoplasty/methods , Computer Simulation , Finite Element Analysis , Humans , Nasal Cartilages/surgery , Nasal Septum/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...