Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Infect Immun ; 79(6): 2430-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21422176

ABSTRACT

We previously isolated a spontaneous mutant of Escherichia coli K-12, strain MG1655, following passage through the streptomycin-treated mouse intestine, that has colonization traits superior to the wild-type parent strain (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). This intestine-adapted strain (E. coli MG1655*) grew faster on several different carbon sources than the wild type and was nonmotile due to deletion of the flhD gene. We now report the results of several high-throughput genomic analysis approaches to further characterize E. coli MG1655*. Whole-genome pyrosequencing did not reveal any changes on its genome, aside from the deletion at the flhDC locus, that could explain the colonization advantage of E. coli MG1655*. Microarray analysis revealed modest yet significant induction of catabolic gene systems across the genome in both E. coli MG1655* and an isogenic flhD mutant constructed in the laboratory. Catabolome analysis with Biolog GN2 microplates revealed an enhanced ability of both E. coli MG1655* and the isogenic flhD mutant to oxidize a variety of carbon sources. The results show that intestine-adapted E. coli MG1655* is more fit than the wild type for intestinal colonization, because loss of FlhD results in elevated expression of genes involved in carbon and energy metabolism, resulting in more efficient carbon source utilization and a higher intestinal population. Hence, mutations that enhance metabolic efficiency confer a colonization advantage.


Subject(s)
Escherichia coli K12/pathogenicity , Intestines/microbiology , Animals , Base Sequence , Escherichia coli K12/genetics , Genes, Bacterial/genetics , Genes, Bacterial/physiology , Genome/genetics , Genome-Wide Association Study , Genotype , Male , Mice , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Phenotype , Sequence Analysis
2.
Infect Immun ; 77(7): 2876-86, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19364832

ABSTRACT

Different Escherichia coli strains generally have the same metabolic capacity for growth on sugars in vitro, but they appear to use different sugars in the streptomycin-treated mouse intestine (Fabich et al., Infect. Immun. 76:1143-1152, 2008). Here, mice were precolonized with any of three human commensal strains (E. coli MG1655, E. coli HS, or E. coli Nissle 1917) and 10 days later were fed 10(5) CFU of the same strains. While each precolonized strain nearly eliminated its isogenic strain, confirming that colonization resistance can be modeled in mice, each allowed growth of the other commensal strains to higher numbers, consistent with different commensal E. coli strains using different nutrients in the intestine. Mice were also precolonized with any of five commensal E. coli strains for 10 days and then were fed 10(5) CFU of E. coli EDL933, an O157:H7 pathogen. E. coli Nissle 1917 and E. coli EFC1 limited growth of E. coli EDL933 in the intestine (10(3) to 10(4) CFU/gram of feces), whereas E. coli MG1655, E. coli HS, and E. coli EFC2 allowed growth to higher numbers (10(6) to 10(7) CFU/gram of feces). Importantly, when E. coli EDL933 was fed to mice previously co-colonized with three E. coli strains (MG1655, HS, and Nissle 1917), it was eliminated from the intestine (<10 CFU/gram of feces). These results confirm that commensal E. coli strains can provide a barrier to infection and suggest that it may be possible to construct E. coli probiotic strains that prevent growth of pathogenic E. coli strains in the intestine.


Subject(s)
Antibiosis , Escherichia coli/growth & development , Intestines/microbiology , Animals , Anti-Bacterial Agents/administration & dosage , Colony Count, Microbial , Escherichia coli/classification , Feces/microbiology , Humans , Mice , Streptomycin/administration & dosage
3.
Infect Immun ; 77(4): 1397-405, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19168732

ABSTRACT

Previously, we showed that the Salmonella enterica serovar Typhimurium SR-11 tricarboxylic acid (TCA) cycle must operate as a complete cycle for full virulence after oral infection of BALB/c mice (M. Tchawa Yimga, M. P. Leatham, J. H. Allen, D. C. Laux, T. Conway, and P. S. Cohen, Infect. Immun. 74:1130-1140, 2006). In the same study, we showed that for full virulence, malate must be converted to both oxaloacetate and pyruvate. Moreover, it was recently demonstrated that blocking conversion of succinyl-coenzyme A to succinate attenuates serovar Typhimurium SR-11 but does not make it avirulent; however, blocking conversion of succinate to fumarate renders it completely avirulent and protective against subsequent oral infection with the virulent serovar Typhimurium SR-11 wild-type strain (R. Mercado-Lubo, E. J. Gauger, M. P. Leatham, T. Conway, and P. S. Cohen, Infect. Immun. 76:1128-1134, 2008). Furthermore, the ability to convert succinate to fumarate appeared to be required only after serovar Typhimurium SR-11 became systemic. In the present study, evidence is presented that serovar Typhimurium SR-11 mutants that cannot convert fumarate to malate or that cannot convert malate to both oxaloacetate and pyruvate are also avirulent and protective in BALB/c mice. These results suggest that in BALB/c mice, the malate that is removed from the TCA cycle in serovar Typhimurium SR-11 for conversion to pyruvate must be replenished by succinate or one of its precursors, e.g., arginine or ornithine, which might be available in mouse phagocytes.


Subject(s)
Malates/metabolism , Mutation , Oxaloacetic Acid/metabolism , Pyruvic Acid/metabolism , Salmonella Infections , Salmonella typhimurium , Animals , Citric Acid Cycle , Culture Media , Female , Fumarates/metabolism , Mice , Mice, Inbred BALB C , Salmonella Infections/immunology , Salmonella Infections/microbiology , Salmonella Infections/mortality , Salmonella typhimurium/genetics , Salmonella typhimurium/growth & development , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Succinates/metabolism , Virulence
4.
Infect Immun ; 76(6): 2531-40, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18347038

ABSTRACT

Mutant screens and transcriptome studies led us to consider whether the metabolism of glucose polymers, i.e., maltose, maltodextrin, and glycogen, is important for Escherichia coli colonization of the intestine. By using the streptomycin-treated mouse model, we found that catabolism of the disaccharide maltose provides a competitive advantage in vivo to pathogenic E. coli O157:H7 and commensal E. coli K-12, whereas degradation of exogenous forms of the more complex glucose polymer, maltodextrin, does not. The endogenous glucose polymer, glycogen, appears to play an important role in colonization, since mutants that are unable to synthesize or degrade glycogen have significant colonization defects. In support of the hypothesis that E. coli relies on internal carbon stores to maintain colonization during periods of famine, we found that by providing a constant supply of a readily metabolized sugar, i.e., gluconate, in the animal's drinking water, the competitive disadvantage of E. coli glycogen metabolism mutants is rescued. The results suggest that glycogen storage may be widespread in enteric bacteria because it is necessary for maintaining rapid growth in the intestine, where there is intense competition for resources and occasional famine. An important implication of this study is that the sugars used by E. coli are present in limited quantities in the intestine, making endogenous carbon stores valuable. Thus, there may be merit to combating enteric infections by using probiotics or prebiotics to manipulate the intestinal microbiota in such a way as to limit the availability of sugars preferred by E. coli O157:H7 and perhaps other pathogens.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli O157/metabolism , Glycogen/metabolism , Intestines/microbiology , Maltose/metabolism , Animals , Drug Resistance, Bacterial , Escherichia coli O157/drug effects , Escherichia coli O157/genetics , Gluconates/metabolism , Male , Mice , Mutation , Phenotype , Polysaccharides/metabolism , Streptomycin/pharmacology , Time Factors
5.
Infect Immun ; 76(3): 1143-52, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18180286

ABSTRACT

The carbon sources that support the growth of pathogenic Escherichia coli O157:H7 in the mammalian intestine have not previously been investigated. In vivo, the pathogenic E. coli EDL933 grows primarily as single cells dispersed within the mucus layer that overlies the mouse cecal epithelium. We therefore compared the pathogenic strain and the commensal E. coli strain MG1655 modes of metabolism in vitro, using a mixture of the sugars known to be present in cecal mucus, and found that the two strains used the 13 sugars in a similar order and cometabolized as many as 9 sugars at a time. We conducted systematic mutation analyses of E. coli EDL933 and E. coli MG1655 by using lesions in the pathways used for catabolism of 13 mucus-derived sugars and five other compounds for which the corresponding bacterial gene system was induced in the transcriptome of cells grown on cecal mucus. Each of 18 catabolic mutants in both bacterial genetic backgrounds was fed to streptomycin-treated mice, together with the respective wild-type parent strain, and their colonization was monitored by fecal plate counts. None of the mutations corresponding to the five compounds not found in mucosal polysaccharides resulted in colonization defects. Based on the mutations that caused colonization defects, we determined that both E. coli EDL933 and E. coli MG1655 used arabinose, fucose, and N-acetylglucosamine in the intestine. In addition, E. coli EDL933 used galactose, hexuronates, mannose, and ribose, whereas E. coli MG1655 used gluconate and N-acetylneuraminic acid. The colonization defects of six catabolic lesions were found to be additive with E. coli EDL933 but not with E. coli MG1655. The data indicate that pathogenic E. coli EDL933 uses sugars that are not used by commensal E. coli MG1655 to colonize the mouse intestine. The results suggest a strategy whereby invading pathogens gain advantage by simultaneously consuming several sugars that may be available because they are not consumed by the commensal intestinal microbiota.


Subject(s)
Carbohydrate Metabolism , Escherichia coli/metabolism , Intestines/microbiology , Animals , Colony Count, Microbial , Escherichia coli/genetics , Escherichia coli Infections , Feces/microbiology , Gene Deletion , Gene Expression Profiling , Male , Metabolic Networks and Pathways/genetics , Mice , Oligonucleotide Array Sequence Analysis
6.
Infect Immun ; 76(3): 1128-34, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18086808

ABSTRACT

Previously we showed that the tricarboxylic acid (TCA) cycle operates as a full cycle during Salmonella enterica serovar Typhimurium SR-11 peroral infection of BALB/c mice (M. Tchawa Yimga et al., Infect. Immun. 74:1130-1140, 2006). The evidence was that a DeltasucCD mutant (succinyl coenzyme A [succinyl-CoA] synthetase), which prevents the conversion of succinyl-CoA to succinate, and a DeltasdhCDA mutant (succinate dehydrogenase), which blocks the conversion of succinate to fumarate, were both attenuated, whereas an SR-11 DeltaaspA mutant (aspartase) and an SR-11 DeltafrdABCD mutant (fumarate reductase), deficient in the ability to run the reductive branch of the TCA cycle, were fully virulent. In the present study, evidence is presented that a serovar Typhimurium SR-11 DeltafrdABCD DeltasdhCDA double mutant is avirulent in BALB/c mice and protective against subsequent infection with the virulent serovar Typhimurium SR-11 wild-type strain via the peroral route and is highly attenuated via the intraperitoneal route. These results suggest that fumarate reductase, which normally runs in the reductive pathway in the opposite direction of succinate dehydrogenase, can replace it during infection by running in the same direction as succinate dehydrogenase in order to run a full TCA cycle in an SR-11 DeltasdhCDA mutant. The data also suggest that the conversion of succinate to fumarate plays a key role in serovar Typhimurium virulence. Moreover, the data raise the possibility that S. enterica DeltafrdABCD DeltasdhCDA double mutants and DeltafrdABCD DeltasdhCDA double mutants of other intracellular bacterial pathogens with complete TCA cycles may prove to be effective live vaccine strains for animals and humans.


Subject(s)
Salmonella Infections, Animal/prevention & control , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Succinate Dehydrogenase/genetics , Animals , Colony Count, Microbial , Female , Gene Deletion , Liver/microbiology , Mice , Mice, Inbred BALB C , Peyer's Patches/microbiology , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/enzymology , Spleen/microbiology , Survival Analysis , Virulence
7.
Infect Immun ; 75(10): 4891-9, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17698572

ABSTRACT

Mammals are aerobes that harbor an intestinal ecosystem dominated by large numbers of anaerobic microorganisms. However, the role of oxygen in the intestinal ecosystem is largely unexplored. We used systematic mutational analysis to determine the role of respiratory metabolism in the streptomycin-treated mouse model of intestinal colonization. Here we provide evidence that aerobic respiration is required for commensal and pathogenic Escherichia coli to colonize mice. Our results showed that mutants lacking ATP synthase, which is required for all respiratory energy-conserving metabolism, were eliminated by competition with respiratory-competent wild-type strains. Mutants lacking the high-affinity cytochrome bd oxidase, which is used when oxygen tensions are low, also failed to colonize. However, the low-affinity cytochrome bo(3) oxidase, which is used when oxygen tension is high, was found not to be necessary for colonization. Mutants lacking either nitrate reductase or fumarate reductase also had major colonization defects. The results showed that the entire E. coli population was dependent on both microaerobic and anaerobic respiration, consistent with the hypothesis that the E. coli niche is alternately microaerobic and anaerobic, rather than static. The results indicate that success of the facultative anaerobes in the intestine depends on their respiratory flexibility. Despite competition for relatively scarce carbon sources, the energy efficiency provided by respiration may contribute to the widespread distribution (i.e., success) of E. coli strains as commensal inhabitants of the mammalian intestine.


Subject(s)
Escherichia coli/growth & development , Escherichia coli/metabolism , Intestines/microbiology , Oxygen Consumption , Aerobiosis , Anaerobiosis , Animals , Bacterial Proton-Translocating ATPases/genetics , Bacterial Proton-Translocating ATPases/physiology , Colony Count, Microbial , Cytochrome b Group , Cytochromes/genetics , Cytochromes/physiology , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/physiology , Escherichia coli/enzymology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/physiology , Feces/microbiology , Male , Mice , Models, Biological , Nitrate Reductase/genetics , Nitrate Reductase/physiology , Oxidoreductases/genetics , Oxidoreductases/physiology , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/physiology
8.
Infect Immun ; 75(11): 5465-75, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17709419

ABSTRACT

Escherichia coli MG1655 uses several sugars for growth in the mouse intestine. To determine the roles of L-fucose and D-ribose, an E. coli MG1655 DeltafucAO mutant and an E. coli MG1655 DeltarbsK mutant were fed separately to mice along with wild-type E. coli MG1655. The E. coli MG1655 DeltafucAO mutant colonized the intestine at a level 2 orders of magnitude lower than that of the wild type, but the E. coli MG1655 DeltarbsK mutant and the wild type colonized at nearly identical levels. Surprisingly, an E. coli MG1655 DeltafucAO DeltarbsK mutant was eliminated from the intestine by either wild-type E. coli MG1655 or E. coli MG1655 DeltafucAO, suggesting that the DeltafucAO mutant switches to ribose in vivo. Indeed, in vitro growth experiments showed that L-fucose stimulated utilization of D-ribose by the E. coli MG1655 DeltafucAO mutant but not by an E. coli MG1655 DeltafucK mutant. Since the DeltafucK mutant cannot convert L-fuculose to L-fuculose-1-phosphate, whereas the DeltafucAO mutant accumulates L-fuculose-1-phosphate, the data suggest that L-fuculose-1-phosphate stimulates growth on ribose both in the intestine and in vitro. An E. coli Nissle 1917 DeltafucAO mutant, derived from a human probiotic commensal strain, acted in a manner identical to that of E. coli MG1655 DeltafucAO in vivo and in vitro. Furthermore, L-fucose at a concentration too low to support growth stimulated the utilization of ribose by the wild-type E. coli strains in vitro. Collectively, the data suggest that L-fuculose-1-phosphate plays a role in the regulation of ribose usage as a carbon source by E. coli MG1655 and E. coli Nissle 1917 in the mouse intestine.


Subject(s)
Escherichia coli/growth & development , Escherichia coli/metabolism , Fucose/metabolism , Intestines/microbiology , Ribose/metabolism , Animals , Biomass , Colony Count, Microbial , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Fructose-Bisphosphate Aldolase/genetics , Gene Deletion , Hexosephosphates/metabolism , Male , Mice , Phosphotransferases (Alcohol Group Acceptor)/genetics , Spectrophotometry
9.
Infect Immun ; 75(7): 3315-24, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17438023

ABSTRACT

Previously, we reported that the mouse intestine selected mutants of Escherichia coli MG1655 that have improved colonizing ability (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). These mutants grew 10 to 20% faster than their parent in mouse cecal mucus in vitro and 15 to 30% faster on several sugars found in the mouse intestine. The mutants were nonmotile and had deletions of various lengths beginning immediately downstream of an IS1 element located within the regulatory region of the flhDC operon, which encodes the master regulator of flagellum biosynthesis, FlhD(4)C(2). Here we show that during intestinal colonization by wild-type E. coli strain MG1655, 45 to 50% of the cells became nonmotile by day 3 after feeding of the strain to mice and between 80 and 90% of the cells were nonmotile by day 15 after feeding. Ten nonmotile mutants isolated from mice were sequenced, and all were found to have flhDC deletions of various lengths. Despite this strong selection, 10 to 20% of the E. coli MG1655 cells remained motile over a 15-day period, suggesting that there is an as-yet-undefined intestinal niche in which motility is an advantage. The deletions appear to be selected in the intestine for two reasons. First, genes unrelated to motility that are normally either directly or indirectly repressed by FlhD(4)C(2) but can contribute to maximum colonizing ability are released from repression. Second, energy normally used to synthesize flagella and turn the flagellar motor is redirected to growth.


Subject(s)
DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/growth & development , Escherichia coli/physiology , Gene Expression Regulation, Bacterial , Intestines/microbiology , Operon , Trans-Activators/metabolism , Animals , Cecum/microbiology , DNA-Binding Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Gene Deletion , Intestinal Mucosa/microbiology , Intestine, Small/microbiology , Male , Mice , Trans-Activators/genetics
10.
Infect Immun ; 74(2): 1130-40, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16428761

ABSTRACT

In Salmonella enterica serovar Typhimurium, the Cra protein (catabolite repressor/activator) regulates utilization of gluconeogenic carbon sources by activating transcription of genes in the gluconeogenic pathway, the glyoxylate bypass, the tricarboxylic acid (TCA) cycle, and electron transport and repressing genes encoding glycolytic enzymes. A serovar Typhimurium SR-11 Deltacra mutant was recently reported to be avirulent in BALB/c mice via the peroral route, suggesting that gluconeogenesis may be required for virulence. In the present study, specific SR-11 genes in the gluconeogenic pathway were deleted (fbp, glpX, ppsA, and pckA), and the mutants were tested for virulence in BALB/c mice. The data show that SR-11 does not require gluconeogenesis to retain full virulence and suggest that as yet unidentified sugars are utilized by SR-11 for growth during infection of BALB/c mice. The data also suggest that the TCA cycle operates as a full cycle, i.e., a sucCD mutant, which prevents the conversion of succinyl coenzyme A to succinate, and an DeltasdhCDA mutant, which blocks the conversion of succinate to fumarate, were both attenuated, whereas both an SR-11 DeltaaspA mutant and an SR-11 DeltafrdABC mutant, deficient in the ability to run the reductive branch of the TCA cycle, were fully virulent. Moreover, although it appears that SR-11 replenishes TCA cycle intermediates from substrates present in mouse tissues, fatty acid degradation and the glyoxylate bypass are not required, since an SR-11 DeltafadD mutant and an SR-11 DeltaaceA mutant were both fully virulent.


Subject(s)
Bacterial Proteins/metabolism , Citric Acid Cycle , Gene Expression Regulation, Bacterial , Gluconeogenesis , Salmonella typhimurium/pathogenicity , Animals , Bacterial Proteins/genetics , Colony Count, Microbial , Culture Media , Female , Glucose/metabolism , Mice , Mice, Inbred BALB C , Mutation , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/mortality , Salmonella typhimurium/genetics , Salmonella typhimurium/growth & development , Virulence
11.
Infect Immun ; 73(12): 8039-49, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16299298

ABSTRACT

D-gluconate which is primarily catabolized via the Entner-Doudoroff (ED) pathway, has been implicated as being important for colonization of the streptomycin-treated mouse large intestine by Escherichia coli MG1655, a human commensal strain. In the present study, we report that an MG1655 Deltaedd mutant defective in the ED pathway grows poorly not only on gluconate as a sole carbon source but on a number of other sugars previously implicated as being important for colonization, including L-fucose, D-gluconate, D-glucuronate, N-acetyl-D-glucosamine, D-mannose, and D-ribose. Furthermore, we show that the mouse intestine selects mutants of MG1655 Deltaedd and wild-type MG1655 that have improved mouse intestine-colonizing ability and grow 15 to 30% faster on the aforementioned sugars. The mutants of MG1655 Deltaedd and wild-type MG1655 selected by the intestine are shown to be nonmotile and to have deletions in the flhDC operon, which encodes the master regulator of flagellar biosynthesis. Finally, we show that DeltaflhDC mutants of wild-type MG1655 and MG1655 Deltaedd constructed in the laboratory act identically to those selected by the intestine; i.e., they grow better than their respective parents on sugars as sole carbon sources and are better colonizers of the mouse intestine.


Subject(s)
Carbohydrate Metabolism , DNA-Binding Proteins/genetics , Escherichia coli Proteins/genetics , Escherichia coli/growth & development , Intestines/microbiology , Trans-Activators/genetics , Animals , Carbohydrate Metabolism/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Deletion , Genes, Bacterial , Gluconates/metabolism , Mice
12.
Proc Natl Acad Sci U S A ; 101(19): 7427-32, 2004 May 11.
Article in English | MEDLINE | ID: mdl-15123798

ABSTRACT

Whole-genome expression profiling revealed Escherichia coli MG1655 genes induced by growth on mucus, conditions designed to mimic nutrient availability in the mammalian intestine. Most were nutritional genes corresponding to catabolic pathways for nutrients found in mucus. We knocked out several pathways and tested the relative fitness of the mutants for colonization of the mouse intestine in competition with their wild-type parent. We found that only mutations in sugar pathways affected colonization, not phospholipid and amino acid catabolism, not gluconeogenesis, not the tricarboxylic acid cycle, and not the pentose phosphate pathway. Gluconate appeared to be a major carbon source used by E. coli MG1655 to colonize, having an impact on both the initiation and maintenance stages. N-acetylglucosamine and N-acetylneuraminic acid appeared to be involved in initiation, but not maintenance. Glucuronate, mannose, fucose, and ribose appeared to be involved in maintenance, but not initiation. The in vitro order of preference for these seven sugars paralleled the relative impact of the corresponding metabolic lesions on colonization: gluconate > N-acetylglucosamine > N-acetylneuraminic acid = glucuronate > mannose > fucose > ribose. The results of this systematic analysis of nutrients used by E. coli MG1655 to colonize the mouse intestine are intriguing in light of the nutrient-niche hypothesis, which states that the ecological niches within the intestine are defined by nutrient availability. Because humans are presumably colonized with different commensal strains, differences in nutrient availability may provide an open niche for infecting E. coli pathogens in some individuals and a barrier to infection in others.


Subject(s)
Carbon/metabolism , Escherichia coli/metabolism , Intestines/microbiology , Animals , Escherichia coli/genetics , Gene Expression Profiling , Mice , Oligonucleotide Array Sequence Analysis
13.
Infect Immun ; 72(3): 1666-76, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14977974

ABSTRACT

Escherichia coli EDL933, an O157:H7 strain, is known to colonize the streptomycin-treated CD-1 mouse intestine by growing in intestinal mucus (E. A. Wadolkowski, J. A. Burris, and A. D. O'Brien, Infect. Immun. 58:2438-2445, 1990), but what nutrients and metabolic pathways are employed during colonization has not been determined. In this study, when the wild-type EDL933 strain was fed to mice along with an EDL933 DeltappsA DeltapckA mutant, which is unable to utilize tricarboxylic acid cycle intermediates and gluconeogenic substrates for growth, both strains colonized the mouse intestine equally well. Therefore, EDL933 utilizes a glycolytic substrate(s) for both initial growth and maintenance when it is the only E. coli strain fed to the mice. However, in the presence of large numbers of MG1655, a K-12 strain, it is shown that EDL933 utilizes a glycolytic substrate(s) for initial growth in the mouse intestine but appears to utilize both glycolytic and gluconeogenic substrates in an attempt to maintain colonization. It is further shown that MG1655 predominantly utilizes glycolytic substrates for growth in the mouse intestine whether growing in the presence or absence of large numbers of EDL933. Data are presented showing that although small numbers of EDL933 grow to large numbers in the intestine in the presence of large numbers of MG1655 when both strains are fed to mice simultaneously, precolonization with MG1655 affords protection against subsequent colonization by EDL933. Moreover, in mice that are precolonized with EDL933, small numbers of MG1655 are able to grow rapidly in the intestine and EDL933 is eliminated. In situ hybridization experiments using E. coli-specific rRNA probes showed that while MG1655 is found only in mucus, EDL933 is found both in mucus and closely associated with intestinal epithelial cells. The data are discussed with respect to competition for nutrients and to the protection that some intestinal commensal E. coli strains might afford against infection by O157:H7 strains.


Subject(s)
Escherichia coli O157/growth & development , Escherichia coli O157/metabolism , Escherichia coli/growth & development , Escherichia coli/metabolism , Intestinal Mucosa/microbiology , Animals , Base Sequence , Cecum/microbiology , DNA, Bacterial/genetics , Epithelial Cells/microbiology , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Escherichia coli O157/genetics , Genes, Bacterial , Gluconeogenesis/genetics , Glycolysis/genetics , Male , Mice , Mucus/microbiology , Mutation , Species Specificity
14.
Infect Immun ; 71(4): 2142-52, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12654836

ABSTRACT

The ability of E. coli strains to colonize the mouse large intestine has been correlated with their ability to grow in cecal and colonic mucus. In the present study, an E. coli MG1655 strain was mutagenized with a mini-Tn5 Km (kanamycin) transposon, and mutants were tested for the ability to grow on agar plates with mouse cecal mucus as the sole source of carbon and nitrogen. One mutant, designated MD42 (for mucus defective), grew poorly on cecal-mucus agar plates but grew well on Luria agar plates and on glucose minimal-agar plates. Sequencing revealed that the insertion in MD42 was in the waaQ gene, which is involved in lipopolysaccharide (LPS) core biosynthesis. Like "deep-rough" E. coli mutants, MD42 was hypersensitive to sodium dodecyl sulfate (SDS), bile salts, and the hydrophobic antibiotic novobiocin. Furthermore, its LPS core oligosaccharide was truncated, like that of a deep-rough mutant. MD42 initially grew in the large intestines of streptomycin-treated mice but then failed to colonize (<10(2) CFU per g of feces), whereas its parent colonized at levels between 10(7) and 10(8) CFU per g of feces. When mouse cecal mucosal sections were hybridized with an E. coli-specific rRNA probe, MD42 was observed in cecal mucus as clumps 24 h postfeeding, whereas its parent was present almost exclusively as single cells, suggesting that clumping may play a role in preventing MD42 colonization. Surprisingly, MD42 grew nearly as well as its parent during growth in undiluted, highly viscous cecal mucus isolated directly from the mouse cecum and, like its parent, survived well after reaching stationary phase, suggesting that there are no antimicrobials in mucus that prevent MD42 colonization. After mini-mariner transposon mutagenesis, an SDS-resistant suppressor mutant of MD42 was isolated. The mini-mariner insertion was shown to be in the bipA gene, a known regulator of E. coli surface components. When grown in Luria broth, the LPS core of the suppressor mutant remained truncated; however, the LPS core was not truncated when the suppressor mutant was grown in the presence of SDS. Moreover, when the suppressor mutant was grown in the presence of SDS and fed to mice, it colonized the mouse large intestine. Collectively, the data presented here suggest that BipA may play a role in E. coli MG1655 LPS core biosynthesis and that because MD42 forms clumps in intestinal mucus, it is unable to colonize the mouse large intestine.


Subject(s)
Cecum/microbiology , Escherichia coli/growth & development , Intestinal Mucosa/microbiology , Intestine, Large/microbiology , Lipopolysaccharides/metabolism , Mutation , Animals , Culture Media , DNA Transposable Elements , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Male , Mice , Phosphoproteins/genetics , Phosphoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...