Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 139(44): 16013-16022, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29083899

ABSTRACT

Copolymerizations of ethylene with vinyltrialkoxysilanes using cationic (α-diimine)Ni(Me)(CH3CN)+ complexes 4a,b/B(C6F5)3 yield high molecular weight copolymers exhibiting highly branched to nearly linear backbones depending on reaction conditions and catalyst choice. Polymerizations are first-order in ethylene pressure and inverse-order in silane concentration. Microstructural analysis of the copolymers reveals both in-chain and chain-end incorporation of -Si(OR)3 groups whose ratios depend on temperature and ethylene pressure. Detailed low-temperature NMR spectroscopic investigations show that well-defined complex 3b (α-diimine)Ni(Me)(OEt2)+ reacts rapidly at -60 °C with vinyltrialkoxysilanes via both 2,1 and 1,2 insertion pathways to yield 4- and 5-membered chelates, respectively. Such chelates are the major catalyst resting states but are in rapid equilibrium with ethylene-opened chelates, (α-diimine)Ni(R)(C2H4)+ complexes, the species responsible for chain growth. Chelate rearrangement via ß-silyl elimination accounts for formation of chain-end -Si(OR)3 groups and constitutes a chain-transfer mechanism. Chelate formation and coordination of the Ni center to the ether moiety, R-O-Si, of the vinylsilane somewhat decreases the turnover frequency (TOF) relative to ethylene homopolymerization, but still remarkably high TOFs of up to 4.5 × 105 h-1 and overall productivities can be achieved. Activation of readily available (α-diimine)NiBr2 complexes 2 with a combination of AlMe3/B(C6F5)3/[Ph3C][B(C6F5)4] yields a highly active and productive catalyst system for the convenient synthesis of the copolymer, a cross-linkable PE. For example, copolymers containing 0.23 mol % silane can be generated at 60 °C, 600 psig ethylene over 4 h with a productivity of 560 kg copolymer/g Ni. This method offers an alternative route to these materials, normally prepared via radical routes, which are precursors to the commercial cross-linked polyethylene, PEX-b.

2.
J Am Chem Soc ; 127(14): 5132-46, 2005 Apr 13.
Article in English | MEDLINE | ID: mdl-15810848

ABSTRACT

Vinyl acetate (VA) and vinyl trifluoroacetate (VA(f)) react with [(NwedgeN)Pd(Me)(L)][X] (M = Pd, Ni, (NwedgeN) = N,N'-1,2-acenaphthylenediylidene bis(2,6-dimethyl aniline), Ar(f) = 3,5-trifluoromethyl phenyl, L = Ar(f)CN, Et2O; X = B(Ar(f))4-, SbF6-) to form pi-adducts 3 and 5 at -40 degrees C. Binding affinities relative to ethylene have been determined. Migratory insertion occurs in a 2,1 fashion (DeltaG++ = 19.4 kcal/mol, 0 degrees C for VA, and 17.4 kcal/mol, -40 degrees C for VA(f)) to yield five-membered chelate complexes [(NwedgeN)Pd(kappa2-CH(Et)(OC(O)-CH3))]+, 4, and [(NwedgeN)Pd(kappa2-CH(Et)(OC(O)CF3))]+, 6. When VA is added to [(NwedgeN)Ni(CH3)]+, an equilibrium mixture of an eta2 olefin complex, 8c, and a kappa-oxygen complex, 8o, results. Insertion occurs from the eta2 olefin complex, 8c (DeltaG++ = 15.5 kcal/mol, -51 degrees C), in both a 2,1 and a 1,2 fashion to generate a mixture of five- and six-membered chelates, 9(2,1) and 9(1,2). VA(f) inserts into the Ni-CH3 bond (-80 degrees C) to form a five-membered chelate with no detectable intermediate. Thermolysis of the Pd chelates results in beta-acetate elimination from 4 (DeltaG++ = 25.5 kcal/mol, 60 degrees C) and beta-trifluoroacetate elimination from 6 (DeltaG = 20.5 kcal/mol, 10 degrees C). The five-membered Ni chelate, 9(2,1), is quite stable at room temperature, but the six-membered chelate, 9(1,2), undergoes beta-elimination at -34 degrees C. Treatment of the OAc(f) containing Pd chelate 6 with ethylene results in complete opening to the pi-complex [(NwedgeN)Pd(kappa2-CH(Et)(OAc(f)))(CH2CH2)]+ (OAc(f) = OC(O)CF3), 18, while reaction of the OAc containing Pd chelate 4 with ethylene establishes an equilibrium between 4 and the open form 16, strongly favoring the closed chelate 4 (DeltaH = -4.1 kcal/mol, DeltaS = -23 eu, K = 0.009 M(-1) at 25 degrees C). The open chelates undergo migratory insertion at much slower rates relative to those of the simple (NwedgeN)Pd(CH3)(CH2CH2)+ analogue. These quantitative studies provide an explanation for the behavior of VA and VA(f) in attempted copolymerizations with ethylene.

3.
J Am Chem Soc ; 125(10): 3068-81, 2003 Mar 12.
Article in English | MEDLINE | ID: mdl-12617674

ABSTRACT

The synthesis of a series of (alpha-diimine)NiR(2) (R = Et, (n)Pr) complexes via Grignard alkylation of the corresponding (alpha-diimine)NiBr(2) precursors is presented. Protonation of these species by the oxonium acid [H(OEt(2))(2)](+)[BAr'(4)](-) at low temperatures yields cationic Ni(II) beta-agostic alkyl complexes which model relevant intermediates present in nickel-catalyzed olefin polymerization reactions. The highly dynamic nature of these agostic alkyl cations is quantitatively addressed using NMR line broadening techniques. Trapping of these complexes with ethylene provides cationic Ni alkyl ethylene species, which are used to determine rates of ethylene insertion into primary and secondary carbon centers. The Ni agostic alkyl cations are also trapped by CH(3)CN and Me(2)S to yield Ni(R)(L)(+) (L = CH(3)CN, Me(2)S) complexes, and the dynamic behavior of these species in the presence of varied [L] is discussed. The kinetic data obtained from these experiments are used to present an overall picture of the ethylene polymerization mechanism for (alpha-diimine)Ni catalysts, including effects of reaction temperature and ethylene pressure on catalyst activity, polyethylene branching, and polymer architecture. Detailed comparisons of these systems to the previously presented analogous palladium catalysts are made.

SELECTION OF CITATIONS
SEARCH DETAIL
...