Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38062745

ABSTRACT

Objective: Electrical Stimulation Therapy (EST) shows promise for the purpose of accelerating wound healing, but the right electrical stimulation parameters and its mode of action remain unclear. We aim to evaluate the effect of a new EST clinical device on epidermal repair using an in vitro human skin wound model. Approach: We scaled up a well-established 3D De-Epidermized Dermis-Human Skin Equivalent (DED-HSE) wound model to fit a clinically used device that delivers preprogrammed microcurrent EST. The impact of EST on re-epithelialization of 4-mm circular epidermal wounds was assessed after 4 and 7 days of treatment, using metabolic activity assay, immunohistochemistry (IHC) staining, and RNA in situ hybridization. Results: EST was successfully applied to the wounded in vitro skin model. Large DED-HSEs retained good cell viability for up to 7 days of EST treatment. Excisional wounds subjected to EST for 4 days consistently exhibited faster closure (mean 65.8%, n = 9) compared to untreated wounds (mean 49.7%, n = 9) (p < 0.05). Wounds exposed to EST exhibited significantly longer epithelial tongues (re-epithelialization mean 50.3%, n = 9) than untreated wounds (mean 26.2%, n = 9) (p < 0.001), suggesting faster keratinocyte migration and proliferation. Increased MMP1 transcription (p < 0.05) in ES-treated periwound suggests a mechanism for enhanced keratinocyte migration. IHC staining showed advanced epidermal proliferation (p63) and differentiation (K10) in EST-exposed wounds (n = 15), as well as stronger attachment of the newly formed epidermis into the dermis compared to untreated controls (n = 15) (p < 0.001). Innovation: We present a novel approach to assess an EST clinical device designed to stimulate wound healing. Using a scaled-up 3D human skin wound model, we could demonstrate the positive effect of EST on epithelial cell responses and shed light on possible mechanism. Conclusion: Our study provides experimental evidence that microcurrent therapy accelerates wound closure and improves the quantity and quality of re-epithelialization.

3.
ACS Biomater Sci Eng ; 6(10): 5653-5661, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33320583

ABSTRACT

There is a growing demand for biocompatible and mechanically robust arrays of microcompartments loaded with minute amounts of active substances for sensing or controlled release applications. Here we report on a novel biocompatible composite material, protein-polyphenol-clay (PPC) multilayer film. The material is shown to be strong enough to make robust microchambers retaining the shape and dimensions of truncated square pyramids. We study the mechanical properties and biocompatibility of the PPC microchambers and compare them to those made of synthetic polyelectrolyte multilayer film, poly(styrenesulfonate)-poly(allylammonium) (PSS-PAH). The mechanical properties of the microchambers were characterized under uniaxial compression using nanoindentation with a flat-punch tip. The effective Young's modulus of PPC microchambers, 166 ± 53 MPa, is found to be lower than that of PSS-PAH microchambers, 245 ± 52 MPa. However, the capacity to elastically absorb the energy of the former, 2.4 ± 1.0 MPa, is marginally higher than of the latter, 2.0 ± 1.3 MPa. Arrays of microchambers were sealed onto a polyethylene film, loaded with a model oil-soluble drug, and their biocompatibility was tested using an ex vivo 3D human skin reconstruct model. We found no evidence for toxicity with the PPC microchambers; however, PSS-PAH microchambers stimulated reduced cell density in the epidermis and significantly affected epidermal-dermal attachment. Both materials do not alter skin cell proliferation but affect skin cell differentiation. We interpret that rather than affecting epidermal barrier function, these data suggest the applied plastic films with microchamber arrays affect transpiration, normoxia, and moisture exchange.


Subject(s)
Biocompatible Materials , Polyphenols , Clay , Humans , Polyelectrolytes , Polyethylenes
4.
Article in English | MEDLINE | ID: mdl-32328468

ABSTRACT

Malassezia is the most abundant eukaryotic microbial genus on human skin. Similar to many human-residing fungi, Malassezia has high metabolic potential and secretes a plethora of hydrolytic enzymes that can potentially modify and structure the external skin environment. Here we show that the dominant secreted Malassezia protease isolated from cultured Malassezia furfur is an aspartyl protease that is secreted and active at all phases of culture growth. We observed that this protease, herein named as MfSAP1 (M. furfur secreted aspartyl protease 1) has a broader substrate cleavage profile and higher catalytic efficiency than the previously reported protease homolog in Malassezia globosa. We demonstrate that MfSAP1 is capable of degrading a wide range of human skin associated extracellular matrix (ECM) proteins and ECM isolated directly from keratinocytes and fibroblasts. Using a 3-D wound model with primary keratinocytes grown on human de-epidermized dermis, we show that MfSAP1 protease can potentially interfere with wound re-epithelization in an acute wound model. Taken together, our work demonstrates that Malassezia proteases have host-associated substrates and play important roles in cutaneous wound healing.


Subject(s)
Aspartic Acid Proteases , Malassezia , Extracellular Matrix , Humans , Peptide Hydrolases , Skin
5.
Int J Mol Sci ; 21(3)2020 Feb 08.
Article in English | MEDLINE | ID: mdl-32046334

ABSTRACT

Extracellular membrane vesicles (EVs) have emerged as potential candidates for diagnostics and therapeutics. We have previously reported that keratinocytes release three types of EVs into the extracellular environment. Importantly, those EVs contain a large number of microRNAs (miRNAs) as cargo. In this study, we examined the expression level of keratinocyte-derived EV miRNAs, their target genes and potential functions. Next generation sequencing results showed that over one hundred miRNAs in each EV subtype exhibited greater than 100 reads per million (RPM), indicating a relatively high abundance. Analysis of the miRNAs with the highest abundance revealed associations with different keratinocyte cell sources. For instance, hsa-miR-205 was associated with the HaCaT cells whereas hsa-miR-21, hsa-miR-203, hsa-miR-22 and hsa-miR-143 were associated with human primary dermal keratinocytes (PKCs). Additionally, functional annotation analysis of genes regulated by those miRNAs, especially with regard to biological processes, also revealed cell-type-specific associations with either HaCaTs or PKCs. Indeed, EV functional effects were related to their parental cellular origin; specifically, PKC-derived EVs influenced fibroblast migration whereas HaCaT-derived EVs did not. In addition, the data in this current study indicates that keratinocyte-derived EVs and/or their cargoes have potential applications for wound healing.


Subject(s)
Extracellular Vesicles/metabolism , Keratinocytes/metabolism , MicroRNAs , Cell Line , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, RNA
6.
Article in English | MEDLINE | ID: mdl-30258405

ABSTRACT

Extracellular vesicles (EVs) are mammalian cell-derived nano-scale structures enclosed by a lipid bilayer that were previously considered to be cell debris with little biological value. However, EVs are now recognized to possess biological function, acting as a packaging, transport and delivery mechanisms by which functional molecules (i.e., miRNAs) can be transferred to target cells over some distance. To examine the miRNA from keratinocyte-derived EVs, we isolated three distinct populations of EVs from both HaCaT and primary human keratinocytes (PKCs) and characterized their biophysical, biochemical and functional features by using microscopy, immunoblotting, nanoparticle tracking, and next generation sequencing. We identified 1,048; 906; and 704 miRNAs, respectively, in apoptotic bodies (APs), microvesicles (MVs) and exosomes (EXs) released from HaCaT, and 608; 506; and 622 miRNAs in APs, MVs and EXs released from PKCs. In which, there were 623 and 437 identified miRNAs common to three HaCaT-derived EVs and PKC-derived EVs, respectively. In addition, we found hundreds of exosomal miRNAs that were previously un-reported. Differences in the abundance levels of the identified EV miRNAs could discriminate between the three EV populations. These data contribute substantially to knowledge within the EV-identified miRNA database, especially with regard to keratinocyte-derived EV miRNA content.

7.
Cell Adh Migr ; 11(5-6): 496-503, 2017 Sep 03.
Article in English | MEDLINE | ID: mdl-28276927

ABSTRACT

The scratch or wound-healing assay is used ubiquitously for investigating re-epithelialisation and has already revealed the importance of cells comprising the leading edge of healing epithelial wounds. However it is currently limited to studying the effect of known biochemical agents on the tissue of choice. Here we present an adaptation that extends the utility of this model to encompass the collection of cells from the leading edge of migrating epithelial sheets making available explorative biochemical analyses. The method is scalable and does not require expensive apparatus, making it suitable for large and small laboratories alike. We detail the application of our method and exemplify proof of principle data derived from primary human keratinocyte cultures.


Subject(s)
Cell Movement/physiology , Wound Healing/physiology , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Keratinocytes/cytology , Keratinocytes/metabolism
8.
Mol Cancer Ther ; 15(7): 1602-13, 2016 07.
Article in English | MEDLINE | ID: mdl-27196774

ABSTRACT

We provide proof-of-concept evidence for a new class of therapeutics that target growth factor:extracellular matrix (GF:ECM) interactions for the management of breast cancer. Insulin-like growth factor-I (IGF-I) forms multiprotein complexes with IGF-binding proteins (IGFBP) and the ECM protein vitronectin (VN), and stimulates the survival, migration and invasion of breast cancer cells. For the first time we provide physical evidence for IGFBP-3:VN interactions in breast cancer patient tissues; these interactions were predominantly localized to tumor cell clusters and in stroma surrounding tumor cells. We show that disruption of IGF-I:IGFBP:VN complexes with L(27)-IGF-II inhibits IGF-I:IGFBP:VN-stimulated breast cancer cell migration and proliferation in two- and three-dimensional assay systems. Peptide arrays screened to identify regions critical for the IGFBP-3/-5:VN and IGF-II:VN interactions demonstrated IGFBP-3/-5 and IGF-II binds VN through the hemopexin-2 domain, and VN binds IGFBP-3 at residues not involved in the binding of IGF-I to IGFBP-3. IGFBP-interacting VN peptides identified from these peptide arrays disrupted the IGF-I:IGFBP:VN complex, impeded the growth of primary tumor-like spheroids and, more importantly, inhibited the invasion of metastatic breast cancer cells in 3D assay systems. These studies provide first-in-field evidence for the utility of small peptides in antagonizing GF:ECM-mediated biologic functions and present data demonstrating the potential of these peptide antagonists as novel therapeutics. Mol Cancer Ther; 15(7); 1602-13. ©2016 AACR.


Subject(s)
Breast Neoplasms/metabolism , Insulin-Like Growth Factor I/metabolism , Somatomedins/metabolism , Vitronectin/metabolism , Amino Acid Sequence , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Humans , Immunohistochemistry , Insulin-Like Growth Factor Binding Protein 3/chemistry , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor I/chemistry , Ligands , Models, Molecular , Multiprotein Complexes/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Protein Binding/drug effects , Protein Conformation , Protein Interaction Domains and Motifs , Somatomedins/chemistry , Vitronectin/chemistry
9.
Chem Biol Interact ; 228: 18-27, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25591861

ABSTRACT

Scarring is a significant medical burden; financially to the health care system and physically and psychologically for patients. Importantly, there have been numerous case reports describing the occurrence of cancer in burn scars. Currently available therapies are not satisfactory due to their undesirable side-effects, complex delivery routes, requirements for long-term use and/or expense. Radix Arnebiae (Zi Cao), a perennial herb, has been clinically applied to treat burns and manage scars for thousands of years in Asia. Shikonin, an active component extracted from Radix Arnebiae, has been demonstrated to induce apoptosis in cancer cells. Apoptosis is an essential process during scar tissue remodelling. It was therefore hypothesized that Shikonin may induce apoptosis in scar-associated cells. This investigation presents the first detailed in vitro study examining the functional responses of scar-associated cells to Shikonin, and investigates the mechanisms underlying these responses. The data obtained suggests that Shikonin inhibits cell viability and proliferation and reduces detectable collagen in scar-derived fibroblasts. Further investigation revealed that Shikonin induces apoptosis in scar fibroblasts by differentially regulating the expression of caspase 3, Bcl-2, phospho-Erk1/2 and phospho-p38. In addition, Shikonin down-regulates the expression of collagen I, collagen III and alpha-smooth muscle actin genes hence attenuating collagen synthesis in scar-derived fibroblasts. In summary, it is demonstrated that Shikonin induces apoptosis and decreases collagen production in scar-associated fibroblasts and may therefore hold potential as a novel scar remediation therapy.


Subject(s)
Cicatrix/drug therapy , Cicatrix/pathology , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cicatrix/genetics , Cicatrix/metabolism , Collagen/biosynthesis , Collagen/genetics , Dose-Response Relationship, Drug , Humans , Keratinocytes/drug effects , Structure-Activity Relationship
10.
BMC Cancer ; 14: 627, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25167778

ABSTRACT

BACKGROUND: Cancer metastasis is the main contributor to breast cancer fatalities as women with the metastatic disease have poorer survival outcomes than women with localised breast cancers. There is an urgent need to develop appropriate prognostic methods to stratify patients based on the propensities of their cancers to metastasise. The insulin-like growth factor (IGF)-I: IGF binding protein (IGFBP):vitronectin complexes have been shown to stimulate changes in gene expression favouring increased breast cancer cell survival and a migratory phenotype. We therefore investigated the prognostic potential of these IGF- and extracellular matrix (ECM) interaction-induced proteins in the early identification of breast cancers with a propensity to metastasise using patient-derived tissue microarrays. METHODS: Semiquantitative immunohistochemistry analyses were performed to compare the extracellular and subcellular distribution of IGF- and ECM-induced signalling proteins among matched normal, primary cancer and metastatic cancer formalin-fixed paraffin-embedded breast tissue samples. RESULTS: The IGF- and ECM-induced signalling proteins were differentially expressed between subcellular and extracellular localisations. Vitronectin and IGFBP-5 immunoreactivity was lower while ß1 integrin immunoreactivity was higher in the stroma surrounding metastatic cancer tissues, as compared to normal breast and primary cancer stromal tissues. Similarly, immunoreactive stratifin was found to be increased in the stroma of primary as well as metastatic breast tissues. Immunoreactive fibronectin and ß1 integrin was found to be highly expressed at the leading edge of tumours. Based on the immunoreactivity it was apparent that the cell signalling proteins AKT1 and ERK1/2 shuffled from the nucleus to the cytoplasm with tumour progression. CONCLUSION: This is the first in-depth, compartmentalised analysis of the distribution of IGF- and ECM-induced signalling proteins in metastatic breast cancers. This study has provided insights into the changing pattern of cellular localisation and expression of IGF- and ECM-induced signalling proteins in different stages of breast cancer. The differential distribution of these biomarkers could provide important prognostic and predictive indicators that may assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy.


Subject(s)
Breast Neoplasms/pathology , Extracellular Matrix/metabolism , Insulin-Like Growth Factor Binding Proteins/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Breast Neoplasms/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Signal Transduction
11.
BMC Syst Biol ; 7: 137, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24330479

ABSTRACT

BACKGROUND: The expansion of cell colonies is driven by a delicate balance of several mechanisms including cell motility, cell-to-cell adhesion and cell proliferation. New approaches that can be used to independently identify and quantify the role of each mechanism will help us understand how each mechanism contributes to the expansion process. Standard mathematical modelling approaches to describe such cell colony expansion typically neglect cell-to-cell adhesion, despite the fact that cell-to-cell adhesion is thought to play an important role. RESULTS: We use a combined experimental and mathematical modelling approach to determine the cell diffusivity, D, cell-to-cell adhesion strength, q, and cell proliferation rate, λ, in an expanding colony of MM127 melanoma cells. Using a circular barrier assay, we extract several types of experimental data and use a mathematical model to independently estimate D, q and λ. In our first set of experiments, we suppress cell proliferation and analyse three different types of data to estimate D and q. We find that standard types of data, such as the area enclosed by the leading edge of the expanding colony and more detailed cell density profiles throughout the expanding colony, does not provide sufficient information to uniquely identify D and q. We find that additional data relating to the degree of cell-to-cell clustering is required to provide independent estimates of q, and in turn D. In our second set of experiments, where proliferation is not suppressed, we use data describing temporal changes in cell density to determine the cell proliferation rate. In summary, we find that our experiments are best described using the range D=161-243µm2 hour-1, q=0.3-0.5 (low to moderate strength) and λ=0.0305-0.0398 hour-1, and with these parameters we can accurately predict the temporal variations in the spatial extent and cell density profile throughout the expanding melanoma cell colony. CONCLUSIONS: Our systematic approach to identify the cell diffusivity, cell-to-cell adhesion strength and cell proliferation rate highlights the importance of integrating multiple types of data to accurately quantify the factors influencing the spatial expansion of melanoma cell colonies.


Subject(s)
Melanoma/pathology , Systems Biology/methods , Cell Adhesion/drug effects , Cell Count , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Size/drug effects , Humans , Kinetics , Mitomycin/pharmacology
12.
IUBMB Life ; 65(10): 807-18, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24030926

ABSTRACT

The concept that the mammalian glycoprotein vitronectin acts as a biological 'glue' and key controller of mammalian tissue repair and remodelling activity is emerging from nearly 50 years of experimental in vitro and in vivo data. Unexpectedly, the vitronectin-knockout (VN-KO) mouse was found to be viable and to have largely normal phenotype. However, diligent observation revealed that the VN-KO animal exhibits delayed coagulation and poor wound healing. This is interpreted to indicate that VN occupies a role in the earliest events of thrombogenesis and tissue repair. VN is the foundation upon which the thrombus grows in an organised structure. In addition to sealing the wound, the thrombus also serves to protect the underlying tissue from oxidation, is a reservoir of mitogens and tissue repair mediators, and provides a provisional scaffold for the repairing tissue. In the absence of VN (e.g., VN-KO animal), this cascade is disrupted before it begins. A wide variety of biologically active species associate with VN. Although initial studies were focused on mitogens, other classes of bioactives (e.g., glycosaminoglycans and metalloproteinases) are now also known to specifically interact with VN. Although some interactions are transient, others are long-lived and often result in multi-protein complexes. Multi-protein complexes provide several advantages: prolonging molecular interactions, sustaining local concentrations, facilitating co-stimulation of cell surface receptors and thereby enhancing cellular/biological responses. We contend that these, or equivalent, multi-protein complexes facilitate VN polyfunctionality in vivo. It is also likely that many of the species demonstrated to associate with VN in vitro, also associate with VN in vivo in similar multi-protein complexes. Thus, the predominant biological function of VN is that of a master controller of the extracellular environment; informing, and possibly instructing cells 'where' to behave, 'when' to behave and 'how' to behave (i.e., appropriately for the current circumstance).


Subject(s)
Blood Coagulation/genetics , Extracellular Matrix/metabolism , Multiprotein Complexes/genetics , Vitronectin/genetics , Animals , Glycosaminoglycans/metabolism , Mice , Mice, Knockout , Vitronectin/metabolism , Wound Healing/genetics
13.
J R Soc Interface ; 10(82): 20130007, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23427098

ABSTRACT

Moving fronts of cells are essential features of embryonic development, wound repair and cancer metastasis. This paper describes a set of experiments to investigate the roles of random motility and proliferation in driving the spread of an initially confined cell population. The experiments include an analysis of cell spreading when proliferation was inhibited. Our data have been analysed using two mathematical models: a lattice-based discrete model and a related continuum partial differential equation model. We obtain independent estimates of the random motility parameter, D, and the intrinsic proliferation rate, λ, and we confirm that these estimates lead to accurate modelling predictions of the position of the leading edge of the moving front as well as the evolution of the cell density profiles. Previous work suggests that systems with a high λ/D ratio will be characterized by steep fronts, whereas systems with a low λ/D ratio will lead to shallow diffuse fronts and this is confirmed in the present study. Our results provide evidence that continuum models, based on the Fisher-Kolmogorov equation, are a reliable platform upon which we can interpret and predict such experimental observations.


Subject(s)
Cell Movement/physiology , Cell Proliferation , Models, Biological , 3T3 Cells , Animals , Mice
14.
PLoS One ; 7(3): e33714, 2012.
Article in English | MEDLINE | ID: mdl-22457785

ABSTRACT

Biomarker analysis has been implemented in sports research in an attempt to monitor the effects of exertion and fatigue in athletes. This study proposed that while such biomarkers may be useful for monitoring injury risk in workers, proteomic approaches might also be utilised to identify novel exertion or injury markers. We found that urinary urea and cortisol levels were significantly elevated in mining workers following a 12 hour overnight shift. These levels failed to return to baseline over 24 h in the more active maintenance crew compared to truck drivers (operators) suggesting a lack of recovery between shifts. Use of a SELDI-TOF MS approach to detect novel exertion or injury markers revealed a spectral feature which was associated with workers in both work categories who were engaged in higher levels of physical activity. This feature was identified as the LG3 peptide, a C-terminal fragment of the anti-angiogenic/anti-tumourigenic protein endorepellin. This finding suggests that urinary LG3 peptide may be a biomarker of physical activity. It is also possible that the activity mediated release of LG3/endorepellin into the circulation may represent a biological mechanism for the known inverse association between physical activity and cancer risk/survival.


Subject(s)
Heparan Sulfate Proteoglycans/chemistry , Mining , Motor Activity , Occupational Exposure , Peptide Fragments/chemistry , Adult , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Humans , Hydrocortisone/urine , Male , Middle Aged , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
15.
Int Wound J ; 8(5): 522-32, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21914133

ABSTRACT

Several different advanced treatments have been used to improve healing in chronic wounds, but none have shown sustained success. The application of topical growth factors (GFs) has displayed some potential, but the varying results, high doses and high costs have limited their widespread adoption. Many treatments have ignored the evidence that wound healing is driven by interactions between extracellular matrix proteins and GFs, not just GFs alone. We report herein that a clinical Good Manufacturing Practice-grade vitronectin:growth factor (cVN:GF) complex is able to stimulate functions relevant to wound repair in vitro, such as enhanced cellular proliferation and migration. Furthermore, we assessed this complex as a topical wound healing agent in a single-arm pilot study using venous leg ulcers, as well as several 'difficult to heal' case studies. The cVN:GF complex was safe and re-epithelialisation was observed in all but 1 of the 30 patients in the pilot study. In addition, the case studies show that this complex may be applied to several ulcer aetiologies, such as venous leg ulcers, diabetic foot ulcers and pressure ulcers. These findings suggest that further evaluation is warranted to determine whether the cVN:GF complex may be an effective topical treatment for chronic wounds.


Subject(s)
Intercellular Signaling Peptides and Proteins/administration & dosage , Pressure Ulcer/drug therapy , Varicose Ulcer/drug therapy , Vitronectin/administration & dosage , Wound Healing/drug effects , Administration, Topical , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Chronic Disease , Diabetic Foot/drug therapy , Drug Therapy, Combination , Female , Humans , Pilot Projects , Pressure Ulcer/pathology , Treatment Outcome , Varicose Ulcer/pathology
16.
J Control Release ; 153(3): 225-32, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21457738

ABSTRACT

We have previously reported that novel vitronectin:growth factor (VN:GF) complexes significantly increase re-epithelialization in a porcine deep dermal partial-thickness burn model. However, the potential exists to further enhance the healing response through combination with an appropriate delivery vehicle which facilitates sustained local release and reduced doses of VN:GF complexes. Hyaluronic acid (HA), an abundant constituent of the interstitium, is known to function as a reservoir for growth factors and other bioactive species. The physicochemical properties of HA confer it with an ability to sustain elevated pericellular concentrations of these species. This has been proposed to arise via HA prolonging interactions of the bioactive species with cell surface receptors and/or protecting them from degradation. In view of this, the potential of HA to facilitate the topical delivery of VN:GF complexes was evaluated. Two-dimensional (2D) monolayer cell cultures and 3D de-epidermised dermis (DED) human skin equivalent (HSE) models were used to test skin cell responses to HA and VN:GF complexes. Our 2D studies revealed that VN:GF complexes and HA stimulate the proliferation of human fibroblasts but not keratinocytes. Experiments in our 3D DED-HSE models showed that VN:GF complexes, both alone and in conjunction with HA, led to enhanced development of both the proliferative and differentiating layers in the DED-HSE models. However, there was no significant difference between the thicknesses of the epidermis treated with VN:GF complexes alone and VN:GF complexes together with HA. While the addition of HA did not enhance all the cellular responses to VN:GF complexes examined, it was not inhibitory, and may confer other advantages related to enhanced absorption and transport that could be beneficial in delivery of the VN:GF complexes to wounds.


Subject(s)
Drug Carriers/chemistry , Hyaluronic Acid/chemistry , Intercellular Signaling Peptides and Proteins/administration & dosage , Skin/drug effects , Vitronectin/administration & dosage , Wound Healing/drug effects , Cell Culture Techniques , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Culture Media, Serum-Free , Fibroblasts/drug effects , Fibroblasts/physiology , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Keratinocytes/drug effects , Keratinocytes/physiology , Models, Biological , Skin/cytology , Vitronectin/pharmacology
17.
Endocrinology ; 152(4): 1388-401, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21303956

ABSTRACT

Recent studies have demonstrated that IGF-I associates with vitronectin (VN) through IGF-binding proteins (IGFBP), which in turn modulate IGF-stimulated biological functions such as cell proliferation, attachment, and migration. Because IGFs play important roles in transformation and progression of breast tumors, we aimed to describe the effects of IGF-I:IGFBP:VN complexes on breast cell function and to dissect mechanisms underlying these responses. In this study we demonstrate that substrate-bound IGF-I:IGFBP:VN complexes are potent stimulators of MCF-7 breast cell survival, which is mediated by a transient activation of ERK/MAPK and sustained activation of phosphoinositide 3-kinase/AKT pathways. Furthermore, use of pharmacological inhibitors of the MAPK and phosphoinositide 3-kinase pathways confirms that both pathways are involved in IGF-I:IGFBP:VN complex-mediated increased cell survival. Microarray analysis of cells stimulated to migrate in response to IGF-I:IGFBP:VN complexes identified differential expression of genes with previously reported roles in migration, invasion, and survival (Ephrin-B2, Sharp-2, Tissue-factor, Stratifin, PAI-1, IRS-1). These changes were not detected when the IGF-I analogue ([L(24)][A(31)]-IGF-I), which fails to bind to the IGF-I receptor, was substituted; confirming the IGF-I-dependent differential expression of genes associated with enhanced cell migration. Taken together, these studies have established that IGF-I:IGFBP:VN complexes enhance breast cell migration and survival, processes central to facilitating metastasis. This study highlights the interdependence of extracellular matrix and growth factor interactions in biological functions critical for metastasis and identifies potential novel therapeutic targets directed at preventing breast cancer progression.


Subject(s)
Breast Neoplasms/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/pharmacology , Vitronectin/metabolism , Vitronectin/pharmacology , Blotting, Western , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Female , Flow Cytometry , Humans , Protein Binding , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects
18.
J Biomed Mater Res A ; 95(2): 620-31, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20725963

ABSTRACT

The formation of hypertrophic scars (HSF) is a frequent medical outcome of wound repair and often requires further therapy with treatments such as silicone gel sheets (SGS) or apoptosis-inducing agents, including bleomycin. Although widely used, knowledge regarding SGS and their mode of action is limited. Preliminary research has shown that small amounts of amphiphilic silicone present in SGS have the ability to move into skin during treatment. We demonstrate herein that a commercially available analogue of these amphiphilic siloxane species, the rake copolymer GP226, decreases collagen synthesis on exposure to cultures of fibroblasts derived from HSF. By size exclusion chromatography, GP226 was found to be a mixture of siloxane species, containing five fractions of different molecular weight. By studies of collagen production, cell viability and proliferation, it was revealed that a low molecular weight fraction (fraction IV) was the most active, reducing the number of viable cells present after treatment and thereby reducing collagen production as a result. On exposure of fraction IV to human keratinocytes, viability and proliferation were also significantly affected. HSF undergoing apoptosis after application of fraction IV were also detected via real-time microscopy and by using the TUNEL assay. Taken together, these data suggests that these amphiphilic siloxanes could be potential non-invasive substitutes to apoptotic-inducing chemical agents that are currently used as scar treatments.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Fibroblasts , Keratinocytes , Siloxanes/pharmacology , Surface-Active Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Survival/drug effects , Cells, Cultured , Cicatrix, Hypertrophic/pathology , Coculture Techniques , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/physiology , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/physiology , Materials Testing
19.
Growth Factors ; 28(5): 359-69, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20569097

ABSTRACT

Numerous studies have reported links between insulin-like growth factors (IGFs) and the extra-cellular matrix protein vitronectin (VN). We ourselves have reported that IGF-I binds to VN via IGF-binding proteins (IGFBPs) to stimulate HaCaT and MCF-7 cell migration. Here, we detail the functional evaluation of IGFBP-1, -2, -3, -4 and -6 in the presence and absence of IGF-I and VN. The data presented here, combined with our prior data on IGFBP-5, suggest that IGFBP-3, -4 and -5 are the most effective at stimulating cell migration in combination with IGF-I and VN. In addition, we demonstrate that different regions within IGFBP-3 and -4 are critical for complex formation. Furthermore, we examine whether multi-protein complexes of IGF-I and IGFBPs associated with fibronectin and collagen IV are also able to enhance functional biological responses.


Subject(s)
Cell Movement/drug effects , Insulin-Like Growth Factor Binding Proteins/pharmacology , Insulin-Like Growth Factor I/pharmacology , Vitronectin/pharmacology , Cell Line , Cell Line, Tumor , Collagen Type IV/metabolism , Fibronectins/metabolism , Humans , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor I/metabolism , Protein Interaction Domains and Motifs , Vitronectin/metabolism
20.
Tissue Eng Part C Methods ; 16(5): 1111-23, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20109066

ABSTRACT

Numerous difficulties are associated with the conduct of preclinical studies related to skin and wound repair. Use of small animal models such as rodents is not optimal because of their physiological differences to human skin and mode of wound healing. Although pigs have previously been used because of their human-like mode of healing, the expense and logistics related to their use also renders them suboptimal. In view of this, alternatives are urgently required to advance the field. The experiments reported herein were aimed at developing and validating a simple, reproducible, three-dimensional ex vivo de-epidermised dermis human skin equivalent wound model for the preclinical evaluation of novel wound therapies. Having established that the human skin equivalent wound model does in fact “heal," we tested the effect of two novel wound healing therapies. We also examined the utility of the model for studies exploring the mechanisms underpinning these therapies. Taken together the data demonstrate that these new models will have wide-spread application for the generation of fundamental new information on wound healing processes and also hold potential in facilitating preclinical optimization of dosage, duration of therapies, and treatment strategies prior to clinical trials.


Subject(s)
Skin/pathology , Wound Healing , Cells, Cultured , Fluorescent Antibody Technique , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...