Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 46(4): 993-1004, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22209281

ABSTRACT

Algorithms based on red and near infra-red (NIR) reflectances measured using field spectrometers have been previously shown to yield accurate estimates of chlorophyll-a concentration in turbid productive waters, irrespective of variations in the bio-optical characteristics of water. The objective of this study was to investigate the performance of NIR-red models when applied to multi-temporal airborne reflectance data acquired by the hyperspectral sensor, Airborne Imaging Spectrometer for Applications (AISA), with non-uniform atmospheric effects across the dates of data acquisition. The results demonstrated the capability of the NIR-red models to capture the spatial distribution of chlorophyll-a in surface waters without the need for atmospheric correction. However, the variable atmospheric effects did affect the accuracy of chlorophyll-a retrieval. Two atmospheric correction procedures, namely, Fast Line-of-sight Atmospheric Adjustment of Spectral Hypercubes (FLAASH) and QUick Atmospheric Correction (QUAC), were applied to AISA data and their results were compared. QUAC produced a robust atmospheric correction, which led to NIR-red algorithms that were able to accurately estimate chlorophyll-a concentration, with a root mean square error of 5.54 mg m(-3) for chlorophyll-a concentrations in the range 2.27-81.17 mg m(-3).


Subject(s)
Atmosphere/chemistry , Chlorophyll/analysis , Lakes/chemistry , Nephelometry and Turbidimetry/methods , Spectroscopy, Near-Infrared/methods , Chlorophyll A , Linear Models , Models, Chemical , Nebraska , Time Factors , Water Quality
2.
Water Res ; 45(7): 2428-36, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21376361

ABSTRACT

A variety of models have been developed for estimating chlorophyll-a (Chl-a) concentration in turbid and productive waters. All are based on optical information in a few spectral bands in the red and near-infra-red regions of the electromagnetic spectrum. The wavelength locations in the models used were meticulously tuned to provide the highest sensitivity to the presence of Chl-a and minimal sensitivity to other constituents in water. But the caveat in these models is the need for recurrent parameterization and calibration due to changes in the biophysical characteristics of water based on the location and/or time of the year. In this study we tested the performance of NIR-red models in estimating Chl-a concentrations in an environment with a range of Chl-a concentrations that is typical for coastal and mesotrophic inland waters. The models with the same spectral bands as MERIS, calibrated for small lakes in the Midwest U.S., were used to estimate Chl-a concentration in the subtropical Lake Kinneret (Israel), where Chl-a concentrations ranged from 4 to 21 mg m(-3) during four field campaigns. A two-band model without re-parameterization was able to estimate Chl-a concentration with a root mean square error less than 1.5 mg m(-3). Our work thus indicates the potential of the model to be reliably applied without further need of parameterization and calibration based on geographical and/or seasonal regimes.


Subject(s)
Chlorophyll/analysis , Environmental Monitoring/methods , Fresh Water/chemistry , Infrared Rays , Water Pollution/statistics & numerical data , Algorithms , Chlorophyll A , Models, Chemical , Remote Sensing Technology , Spectrophotometry, Infrared , Water Pollution/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...