Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 9(10)2021 10.
Article in English | MEDLINE | ID: mdl-34675067

ABSTRACT

Viral antigens are among the strongest elicitors of immune responses. A significant proportion of the human population already carries pre-existing immunity against several childhood viruses, which could potentially be leveraged to fight cancer. We sought to provide proof of concept in mouse models that a pre-existing measles virus (MeV) immunity can be redirected to inhibit tumor growth by directly forcing expression of cognate antigens in the tumor. To this end, we designed DNA vaccines against known MeV cytotoxic and helper T epitopes, and administered these intradermally to mice that were subsequently challenged with syngeneic squamous cancer cells engineered to either express the cognate antigens or not. Alternatively, established wild-type tumors in vaccinated animals were treated intratumorally with in vitro transcribed mRNA encoding the cognate epitopes. Vaccination generated MeV cytotoxic T lymphocyte (CTL) immunity in mice as demonstrated by enhanced interferon gamma production, antigen-specific T cell proliferation, and CTL-mediated specific killing of antigen-pulsed target cells. When challenged with syngeneic tumor cells engineered to express the cognate antigens, 77% of MeV-vaccinated mice rejected the tumor versus 21% in control cohorts. Antitumor responses were largely dependent on the presence of CD8+ cells. Significant protection was observed even when only 25% of the tumor bulk expressed cognate antigens. We therefore tested the strategy therapeutically, allowing tumors to develop in vaccinated mice before intratumoral injection with Viromer nanoparticles complexed with mRNA encoding the cognate antigens. Treatment significantly enhanced overall survival compared with controls, including complete tumor regression in 25% of mice. Our results indicate that redirecting pre-existing viral immunity to fight cancer is a viable alternative that could meaningfully complement current cancer immune therapies such as personalized cancer vaccines and checkpoint inhibitor blockade.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Carcinoma, Squamous Cell/immunology , Immunologic Memory/immunology , Measles virus/immunology , Animals , Disease Models, Animal , Humans , Mice
3.
J Immunol ; 187(8): 4077-87, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21908735

ABSTRACT

Pollinosis to birch pollen is a common type I allergy in the Northern Hemisphere. Moreover, birch pollen-allergic individuals sensitized to the major birch pollen allergen Bet v 1 frequently develop allergic reactions to stone fruits, hazelnuts, and certain vegetables due to immunological cross-reactivity. The major T cell epitope Bet v 1(142-153) plays an important role in cross-reactivity between the respiratory allergen Bet v 1 and its homologous food allergens. In this study, we cloned and functionally analyzed a human αß TCR specific for the immunodominant epitope Bet v 1(142-153). cDNAs encoding TCR α- and ß-chains were amplified from a Bet v 1(142-153)-specific T cell clone, introduced into Jurkat T cells and peripheral blood T lymphocytes of allergic and nonallergic individuals, and evaluated functionally. The resulting TCR transgenic (TCRtg) T cells responded in an allergen-specific and costimulation-dependent manner to APCs either pulsed with Bet v 1(142-153) peptide or coexpressing invariant chain::Bet v 1(142-153) fusion proteins. TCRtg T cells responded to Bet v 1-related food and tree pollen allergens that were processed and presented by monocyte-derived dendritic cells. Bet v 1(142-153)-presenting but not Bet v 1(4-15)-presenting artificial APCs coexpressing membrane-bound IL-12 polarized allergen-specific TCRtg T cells toward a Th1 phenotype, producing high levels of IFN-γ. Coculture of such Th1-polarized T cells with allergen-specific Th2-differentiated T cells significantly suppressed Th2 effector cytokine production. These data suggest that human allergen-specific TCR can transfer the fine specificity of the original T cell clone to heterologous T cells, which in turn can be instructed to modulate the effector function of the disease initiating/perpetuating allergen-specific Th2-differentiated T cells.


Subject(s)
Antigens, Plant/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Rhinitis, Allergic, Seasonal/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Amino Acid Sequence , Base Sequence , Cell Separation , Cross Reactions/immunology , Flow Cytometry , Fluorescent Antibody Technique , Food Hypersensitivity/immunology , HEK293 Cells , Humans , Immunodominant Epitopes/immunology , Jurkat Cells , Lymphocyte Activation/immunology , Molecular Sequence Data , Receptors, Antigen, T-Cell, alpha-beta/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transduction, Genetic , Transgenes
4.
J Allergy Clin Immunol ; 127(1): 238-45, 245.e1-3, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21211658

ABSTRACT

BACKGROUND: Regulatory T (Treg) cells establish and maintain tolerance to self-antigens and many foreign antigens, such as allergens, by suppressing effector T-cell proliferation and function. We have previously shown that human T-cell receptor (TCR) αß-chains specific for allergen-derived epitopes confer allergen specificity on peripheral blood T cells of individuals with and without allergy. OBJECTIVE: To study the feasibility of generating allergen-specific human Treg cells by retroviral transduction of a transcription unit encoding forkhead box protein 3 (FOXP3) and allergen-specific TCR αß-chains. METHODS: cDNAs encoding the α and ß-chains of a Bet v 1(142-153)-specific TCR (TCR alpha variable region 6/TCR beta variable region 20) and human FOXP3 were linked via picornaviral 2A sequences and expressed as single translational unit from an internal ribosomal entry site-green fluorescence protein-containing retroviral vector. Retrovirally transduced peripheral blood T cells were tested for expression of transgenes, Treg phenotype, and regulatory capacity toward allergen-specific effector T cells. RESULTS: Transduced T cells displayed a Treg phenotype with clear-cut upregulation of CD25, CD39, and cytotoxic T-lymphocyte antigen 4. The transduced cells were hyporesponsive in cytokine production and secretion and, like naturally occurring Treg cells, did not proliferate after antigen-specific or antigen-mimetic stimulation. However, proliferation was inducible upon exposure to exogenous IL-2. In coculture experiments, TRAV6(+)TRBV20(+)FOXP3(+) transgenic T cells, unlike FOXP3(+) single transgenic T cells or naturally occurring Treg cells, highly significantly suppressed T cell cytokine production and proliferation of corresponding allergen-specific effector T cells in an allergen-specific, dose-dependent manner. CONCLUSION: We demonstrate a transgenic approach to engineer human allergen-specific Treg cells that exert their regulatory function in an activation-dependent manner. Customized Treg cells might become useful for tolerance induction therapies in individuals with allergic and other immune-mediated diseases.


Subject(s)
Antigens, Plant/genetics , Forkhead Transcription Factors/genetics , Genetic Engineering/methods , Receptors, Antigen, T-Cell, alpha-beta/genetics , T-Lymphocytes, Regulatory/immunology , Allergens/genetics , Allergens/immunology , Antigens, Plant/immunology , Betula , Cell Separation , Flow Cytometry , Forkhead Transcription Factors/immunology , Genetic Vectors , HEK293 Cells , Humans , Lymphocyte Activation/immunology , Pollen , Receptors, Antigen, T-Cell, alpha-beta/immunology , Retroviridae , T-Lymphocytes, Regulatory/metabolism , Transduction, Genetic , Transfection , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...