Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 17(6): 3775-3781, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28488874

ABSTRACT

We demonstrate an optically controlled molecular-scale pass gate that uses the photoinduced dark states of fluorescent molecules to modulate the flow of excitons. The device consists of four fluorophores spatially arranged on a self-assembled DNA nanostructure. Together, they form a resonance energy transfer (RET) network resembling a standard transistor with a source, channel, drain, and gate. When the gate fluorophore is directly excited, the device is toggled on. Excitons flow freely from the source to the drain, producing strong output fluorescence. Without this excitation, exciton flow through the device is hindered by absorbing paths along the way, resulting in weak output fluorescence. In this Letter, we describe the design and fabrication of the pass gate. We perform a steady-state analysis revealing that the on/off fluorescence ratio for this particular implementation is ∼8.7. To demonstrate dynamic modulation of the pass gate, we toggle the gate excitation on and off and measure the corresponding change in output fluorescence. We characterize the rise and fall times of these transitions, showing that they are faster and/or more easily achieved than other methods of RET network modulation. The pass gate is the first dynamic RET-based logic gate exclusively modulated by dark states and serves as a proof-of-concept device for building more complex RET systems in the future.

2.
Small ; 6(7): 843-50, 2010 Apr 09.
Article in English | MEDLINE | ID: mdl-20349447

ABSTRACT

The self-assembly of molecularly precise nanostructures is widely expected to form the basis of future high-speed integrated circuits, but the technologies suitable for such circuits are not well understood. In this work, DNA self-assembly is used to create molecular logic circuits that can selectively identify specific biomolecules in solution by encoding the optical response of near-field coupled arrangements of chromophores. The resulting circuits can detect label-free, femtomole quantities of multiple proteins, DNA oligomers, and small fragments of RNA in solution via ensemble optical measurements. This method, which is capable of creating multiple logic-gate-sensor pairs on a 2 x 80 x 80-nm DNA grid, is a step toward more sophisticated nanoscale logic circuits capable of interfacing computers with biological processes.


Subject(s)
Fluorescent Dyes/metabolism , Staining and Labeling/methods , Biosensing Techniques , DNA/analysis , Microscopy, Atomic Force , Optical Phenomena , Proteins/analysis , RNA/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...