Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37629919

ABSTRACT

The quality of graphene intended for use in biosensors was assessed on manufactured chips using a set of methods including atomic force microscopy (AFM), Raman spectroscopy, and low-frequency noise investigation. It is shown that local areas of residues on the graphene surface, formed as a result of the interaction of graphene with a photoresist at the initial stage of chip development, led to a spread of chip resistance (R) in the range of 1-10 kOhm and to an increase in the root mean square (RMS) roughness up to 10 times, which can significantly worsen the reproducibility of the parameters of graphene chips for biosensor applications. It was observed that the control of the photoresist residues after photolithography (PLG) using AFM and subsequent additional cleaning reduced the spread of R values in chips to 1-1.6 kOhm and obtained an RMS roughness similar to the roughness in the graphene film before PLG. Monitoring of the spectral density of low-frequency voltage fluctuation (SU), which provides integral information about the system of defects and quality of the material, makes it possible to identify chips with low graphene quality and with inhomogeneously distributed areas of compressive stresses by the type of frequency dependence SU(f).

2.
Materials (Basel) ; 15(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36363260

ABSTRACT

The synthesis of graphene by the graphitization of SiC surface has been driven by a need to develop a way to produce graphene in large quantities. With the increased use of thermal treatments of commercial SiC substrates, a comprehension of the surface restructuring due to the formation of a terrace-stepped nanorelief is becoming a pressing challenge. The aim of this paper is to evaluate the utility of X-ray reflectometry and grazing-incidence off-specular scattering for a non-destructive estimate of depth-graded and lateral inhomogeneities on SiC wafers annealed in a vacuum at a temperature of 1400-1500 °C. It is shown that the grazing-incidence X-ray method is a powerful tool for the assessment of statistical parameters, such as effective roughness height, average terrace period and dispersion. Moreover, these methods are advantageous to local probe techniques because a broad range of spatial frequencies allows for faster inspection of the whole surface area. We have found that power spectral density functions and in-depth density profiles manifest themselves differently between the probing directions along and across a terrace edge. Finally, the X-ray scattering data demonstrate quantitative agreement with the results of atomic force microscopy.

3.
Materials (Basel) ; 14(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513840

ABSTRACT

This work is devoted to the development and optimization of the parameters of graphene-based sensors. The graphene films used in the present study were grown on semi-insulating 6H-SiC substrates by thermal decomposition of SiC at the temperature of ~1700 °C. The results of measurements by Auger and Raman spectroscopies confirmed the presence of single-layer graphene on the silicon carbide surface. Model approach to the theory of adsorption on epitaxial graphene is presented. It is demonstrated that the Green-function method in conjunction with the simple substrate models permit one to obtain analytical results for the charge transfer between adsorbed molecules and substrate. The sensor structure was formed on the graphene film by laser. Initially, a simpler gas sensor was made. The sensors developed in this study demonstrated sensitivity to the NO2 concentration at the level of 1-0.01 ppb. The results obtained in the course of development and the results of testing of the graphene-based sensor for detection of protein molecules are also presented. The biosensor was fabricated by the technology previously developed for the gas sensor. The working capacity of the biosensor was tested with an immunochemical system constituted by fluorescein and monoclonal antibodies (mAbs) binding this dye.

4.
Biosensors (Basel) ; 12(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35049636

ABSTRACT

In this study, we discuss the mechanisms behind changes in the conductivity, low-frequency noise, and surface morphology of biosensor chips based on graphene films on SiC substrates during the main stages of the creation of biosensors for detecting influenza viruses. The formation of phenylamine groups and a change in graphene nano-arrangement during functionalization causes an increase in defectiveness and conductivity. Functionalization leads to the formation of large hexagonal honeycomb-like defects up to 500 nm, the concentration of which is affected by the number of bilayer or multilayer inclusions in graphene. The chips fabricated allowed us to detect the influenza viruses in a concentration range of 10-16 g/mL to 10-10 g/mL in PBS (phosphate buffered saline). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed that these defects are responsible for the inhomogeneous aggregation of antibodies and influenza viruses over the functionalized graphene surface. Non-uniform aggregation is responsible for a weak non-linear logarithmic dependence of the biosensor response versus the virus concentration in PBS. This feature of graphene nano-arrangement affects the reliability of detection of extremely low virus concentrations at the early stages of disease.


Subject(s)
Biosensing Techniques , Graphite , Orthomyxoviridae , Viruses , Electric Conductivity , Reproducibility of Results
5.
Rev Sci Instrum ; 88(1): 014703, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28147664

ABSTRACT

In this paper, we introduce wide-aperture aspherical lens for high-resolution terahertz (THz) imaging. The lens has been designed and analyzed by numerical methods of geometrical optics and electrodynamics. It has been made of high-density polyethylene by shaping at computer-controlled lathe and characterized using a continuous-wave THz imaging setup based on a backward-wave oscillator and Golay detector. The concept of image contrast has been implemented to estimate image quality. According to the experimental data, the lens allows resolving two points spaced at 0.95λ distance with a contrast of 15%. To highlight high resolution in the THz images, the wide-aperture lens has been employed for studying printed electronic circuit board containing sub-wavelength-scale elements. The observed results justify the high efficiency of the proposed lens design.

SELECTION OF CITATIONS
SEARCH DETAIL
...