Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Pharm Anal ; 11(6): 691-698, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34377564

ABSTRACT

Coronavirus disease 2019 is a serious disease that causes acute respiratory syndrome and negatively affects the central nervous system. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) crosses the blood-brain barrier due to the spike (S) protein on the surface of the viral particles. Thus, it is important to develop compounds that not only have an inhibitory effect but are also capable of completely deactivating the S protein function. This study describes the purposeful modification of porphyrins and proposes compounds, asymmetrically hetaryl-substituted porphyrins with benzothiazole, benzoxazole, and N-methylbenzimidazole residues, to deactivate the S protein functions. Molecular docking of SARS-CoV-2 proteins with hetaryl-substituted porphyrins showed that the viral S protein, nucleocapsid (N) protein, and non-structural protein 13 (nsp13) exhibited the highest binding affinity. Hetaryl-substituted porphyrins form strong complexes (13-14 kcal/mol) with the receptor-binding domain of the S protein, while the distance from the porphyrins to the receptor-binding motif (RBM) does not exceed 20 Å; therefore, RBM can be oxidized by 1O2, which is generated by porphyrin. Hetaryl-substituted porphyrins interact with the N protein in the serine/arginine-rich region, and a number of vulnerable amino acid residues are located in the photooxidation zone. This damage complicates the packaging of viral RNA into new virions. High-energy binding of hetaryl-substituted porphyrins with the N- and C-terminal domains of nsp13 was observed. This binding blocks the action of nsp13 as an enzyme of exoribonuclease and methyltransferase, thereby preventing RNA replication and processing. A procedure for the synthesis of hetaryl-substituted porphyrins was developed, new compounds were obtained, their structures were identified, and their photocatalytic properties were studied.

2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-931212

ABSTRACT

Coronavirus disease 2019 is a serious disease that causes acute respiratory syndrome and negatively affects the central nervous system.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)crosses the blood-brain barrier due to the spike (S) protein on the surface of the viral particles.Thus,it is important to develop compounds that not only have an inhibitory effect but are also capable of completely deactivating the S protein function.This study describes the purposeful modification of porphyrins and proposes compounds,asymmetrically hetaryl-substituted porphyrins with benzothia-zole,benzoxazole,and N-methylbenzimidazole residues,to deactivate the S protein functions.Molecular docking of SARS-CoV-2 proteins with hetaryl-substituted porphyrins showed that the viral S protein,nucleocapsid (N) protein,and non-structural protein 13 (nsp13) exhibited the highest binding affinity.Hetaryl-substituted porphyrins form strong complexes (13-14 kcal/mol) with the receptor-binding domain of the S protein,while the distance from the porphyrins to the receptor-binding motif (RBM)does not exceed 20 (A);therefore,RBM can be oxidized by 1O2,which is generated by porphyrin.Hetaryl-substituted porphyrins interact with the N protein in the serine/arginine-rich region,and a number of vulnerable amino acid residues are located in the photooxidation zone.This damage complicates the packaging of viral RNA into new virions.High-energy binding of hetaryl-substituted porphyrins with the N-and C-terminal domains of nsp13 was observed.This binding blocks the action of nsp13 as an enzyme of exoribonuclease and methyltransferase,thereby preventing RNA replication and processing.A pro-cedure for the synthesis of hetaryl-substituted porphyrins was developed,new compounds were ob-tained,their structures were identified,and their photocatalytic properties were studied.

3.
J Photochem Photobiol B ; 211: 112008, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32932136

ABSTRACT

Recently, a new type of spin labels based on photoexcited triplet molecules was proposed for nanometer scale distance measurements by pulsed dipolar electron paramagnetic resonance (PD EPR). However, such molecules are also actively used within biological complexes as photosensitizers for photodynamic therapy (PDT) of cancer. Up to date, the idea of using the photoexcited triplets simultaneously as PDT agents and as spin labels for PD EPR has never been employed. In this work, we demonstrate that PD EPR in conjunction with other methods provides valuable information on the structure and function of PDT candidate complexes, exemplified here with porphyrins bound to human serum albumin (HSA). Two distinct porphyrins with different properties were used: amphiphilic meso-tetrakis(4-hydroxyphenyl)porphyrin (mTHPP) and water soluble cationic meso-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4); HSA was singly nitroxide-labeled to provide a second tag for PD EPR measurements. We found that TMPyP4 locates in a cavity at the center of the four-helix bundle of HSA subdomain IB, close to the interface with solvent, thus being readily accessible to oxygen. As a result, the photolysis of the complex leads to photooxidation of HSA by generated singlet oxygen and causes structural perturbation of the protein. Contrary, in case of mTHPP porphyrin, the binding occurs at the proton-rich pocket of HSA subdomain IIIA, where the access of oxygen to a photosensitizer is hindered. Structural data of PD EPR were supported by other EPR techniques, laser flash photolysis and protein photocleavage studies. Therefore, pulsed EPR on complexes of proteins with photoexcited triplets is a promising approach for gaining structural and functional insights into such PDT agents.


Subject(s)
Antineoplastic Agents/chemistry , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Serum Albumin, Human/chemistry , Electron Spin Resonance Spectroscopy , Humans , Light , Oxidants, Photochemical/chemistry , Photochemotherapy , Singlet Oxygen/chemistry , Solubility , Solvents/chemistry , Spin Labels
4.
Molecules ; 25(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977525

ABSTRACT

The problem of treating viral infections is extremely relevant due to both the emergence of new viral diseases and to the low effectiveness of existing approaches to the treatment of known viral infections. This review focuses on the application of porphyrin, chlorin, and phthalocyanine series for combating viral infections by chemical and photochemical inactivation methods. The purpose of this review paper is to summarize the main approaches developed to date in the chemical and photodynamic inactivation of human and animal viruses using porphyrins and their analogues and to analyze and discuss the information on viral targets and antiviral activity of porphyrins, chlorins, of their conjugates with organic/inorganic compounds obtained in the last 10-15 years in order to identify the most promising areas.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Photochemotherapy/methods , Pneumonia, Viral/drug therapy , Porphyrins/pharmacology , Antiviral Agents/chemistry , COVID-19 , Humans , Indoles/chemistry , Indoles/pharmacology , Isoindoles , Pandemics , Photochemical Processes , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Porphyrins/chemistry , SARS-CoV-2 , Virus Attachment/drug effects
5.
BMC Public Health ; 19(1): 1038, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31375104

ABSTRACT

BACKGROUND: Age cohort screening for hepatitis C virus (HCV) might be an effective strategy if the majority of undiagnosed cases are concentrated in a particular age group. The objective of this study was to determine HCV prevalence in different age cohorts of the general population in the Central European part of Russia and second, to assess feasibility of HCV antigen testing for community screening programs. METHODS: Sera from 2027 volunteers were tested for anti-HCV (Architect Anti-HCV, Abbott Laboratories). All anti-HCV reactive samples were confirmed in an immunoblot and tested for HCV Ag (ARCHITECT HCV Ag, Abbott Laboratories), HCV RNA and HCV viral load. RESULTS: Out of 31 individuals with anti-HCV reactive result, 22 (71%) were confirmed by immunoblot, six were false positives and three were indeterminate. Active infection was observed in 73% of anti-HCV confirmed positives. Five out of 16 individuals had low HCV-RNA levels (< 10,000 IU/mL) and one of those had a very low level (594 IU/mL). Agreement between HCV Ag and HCV RNA was 100%. Total anti-HCV and active HCV infection rates were 1.09% (22/2027) and 0.79% (16/2027), respectively. The peak rates were observed in people 60 years or older (anti-HCV: 2.84% [95% CI: 1.66-4.74%], 13/319; HCV RNA/HCV Ag: 2.23% [95% CI: 1.20-4.00%], 10/319). CONCLUSIONS: Overall HCV prevalence is low, except in people 60 years or older. The latter should be considered as a target group for HCV screening. The high agreement between HCV RNA and HCV Ag suggests the utility of HCV Ag testing to confirm active infection in screening programs.


Subject(s)
Community Health Services , Hepatitis C/epidemiology , Mass Screening/methods , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Hepacivirus/genetics , Hepacivirus/immunology , Hepacivirus/isolation & purification , Hepatitis C/blood , Hepatitis C Antigens/blood , Humans , Infant , Male , Middle Aged , Prevalence , RNA, Viral/blood , Russia/epidemiology , Young Adult
6.
Int J Biol Macromol ; 137: 1153-1160, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31295483

ABSTRACT

The complexation processes of chitosan with cobalt(II)tetrasulfophthalocyanine (CoPc) and copper(II)tetrasulfophthalocyanine (CuPc) were studied calorimetrically in solution. It was established that CoPc forms two types of complexes with chitosan, while CuPc forms a single type of complex with chitosan, in which copper(II)tetrasulfophthalocyanine is in dimerized form. The complexes are thermodynamically stable, which was allowed to study them in a solid form by different methods. Joint application of DSC and TG/DTG methods allowed us to identify the temperature intervals for evaporation of physically and chemically bounded water and thermal decomposition of chitosan and its complexes. The glass transition temperature of chitosan (110.8 °C) is greater than the glass transition temperature of the complexes with CuPc (74.7 °C) and CoPc (71.2 °C). Using SEM images and X-ray data of heated, unheated chitosan and its complexes, it was shown that the complexes are predominantly amorphous. Heating of chitosan and its leads to increasing of amorphous phase. Modification of chitosan by phthalocyanines leads to decreasing of thermal stability of complexes insignificantly.


Subject(s)
Chitosan/chemistry , Indoles/chemistry , Sulfonic Acids/chemistry , Temperature , Drug Stability , Isoindoles
7.
Front Microbiol ; 10: 320, 2019.
Article in English | MEDLINE | ID: mdl-30863382

ABSTRACT

This study analyzes the HIV-1 subtype diversity and its phylodynamics in Moscow region, which is the most densely populated area of Russia characterized by high rates of internal and external migration. The demographic and viral data from 896 HIV-infected individuals collected during 2011-2016 were analyzed. The study revealed broad diversity in the HIV-1 subtypes found in Moscow, which included A6 (85.1%), B (7.6%), CRF02_AG (1.2%) and URF_A6/B recombinants (4.2%). Other HIV-1 subtypes were detected as single cases. While A6 was most prevalent (>86.0%) among heterosexuals, injecting drug users and cases of mother-to-child transmission of HIV, subtype B (76.3%) was more common in men who have sex with men. Phylogenetic reconstruction revealed that the A6 sequences were introduced into the epidemic cluster that arose approximately around 1998. Within the subtype B, six major epidemic clusters were identified, each of which contained strains associated with only one or two dominant transmission routes. The date of origin of these clusters varied between 1980 and 1993, indicating that the HIV-1 B epidemic began much earlier than the HIV-1 A6 epidemic. Reconstruction of the demographic history of subtypes A6 and B identified at least two epidemic growth phases, which included an initial phase of exponential growth followed by a decline in the mid/late 2010s. Thus, our results indicate an increase in HIV-1 genetic diversity in Moscow region. They also help in understanding the HIV-1 temporal dynamics as well as the genetic relationships between its circulating strains.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 215: 153-157, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30825864

ABSTRACT

In this paper, the results of a spectral and thermochemical study of the DNA polyplex formation with chitosan and the effect of ethidium bromide polyplexes, sodium dodecyl sulfate, n-octyltrimethyl ammonium bromide, poly(4-styrenesulfonic acid), and heparin on the stability of the complexes are considered. It has been established that chitosan forms thermodynamically stable complexes with ethidium bromide (EtBr), in which there exists one monomer unit of chitosan for two ethidium bromide ones. The interaction of ethidium bromide with chitosan leads to a charge exchange of the polymer surface. The impact of chitosan on the intercalated DNA-EtBr complex conditions a release of EtBr with a polyplex formation. The process of polyplex formation in the presence of ethidium bromide proceeds endothermically, and in its absence the reaction is exothermic. The polyplex particles formed from DNA after release of EtBr are larger and have a smaller charge, as compared to the polyplex particles obtained without ethidium bromide. It has been found that anionic compounds cause the degradation of polyplexes, and it can prove to be a significant obstacle for using chitosan polyplexes in transfection, since in the presence of heparin in the bloodstream, the complexes will break down before reaching the target.


Subject(s)
Chitosan/chemistry , DNA/chemistry , Ethidium/analogs & derivatives , Ethidium/chemistry , Ions/chemistry , Polymers/chemistry , Spectrum Analysis
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 199: 235-241, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29625380

ABSTRACT

The interaction of tetracationic porphyrins with DNA was studied using UV-Vis absorption, fluorescence spectroscopy and viscometry, and the particle sizes were determined. Аs cationic porphyrins, two isomer porphyrins, 3,3',3″,3‴-(5,10,15,20-Porphyrintetrayl)tetrakis(1-methylpyridinium) (TMPyP3) and 4,4',4″,4‴-(5,10,15,20-Porphyrintetrayl)tetrakis(1-methylpyridinium) (TMPyP4), were studied. They differ in the position of NCH3+ group in phenyl ring of the porphyrins and hence, in degree of freedom of rotation of the phenyl rings about the central macrocycle. It was found that intercalated complexes are formed at DNA/porphyrin molar ratios (R) of 2.2 and 3.9 for TMPyP3 и TMPyP4, respectively. Decreasing R up to 0.4 and 0.8 for TMPyP3 и TMPyP4, respectively, leads mainly to formation of outside complexes due to π-π stacking between the porphyrin chromophores interacting electrostatically with phosphate framework of DNA. Each type of the obtained complexes was characterized using Scatchard approach. It was ascertained that the affinity of TMPyP4 to DNA is stronger than TMPyP3, meanwhile the wedge effect of the latter is higher. The differences between the porphyrin isomers become more evident at irradiation of their complexes with DNA. It was established that irradiation of the intercalated complexes results in DNA fragmentation. In the case of TMPyP4, DNA fragments of different size are formed. The irradiation of the outside DNA/porphyrin complexes leads to cleavage of DNA (TMPyP3 and TMPyP4) and partial destruction of the complex due to photolysis of the porphyrin (TMPyP3).


Subject(s)
DNA Cleavage , DNA/metabolism , Intercalating Agents/metabolism , Photosensitizing Agents/metabolism , Porphyrins/metabolism , Cations , DNA/chemistry , Humans , Intercalating Agents/chemistry , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Spectrometry, Fluorescence
10.
Bioorg Med Chem ; 23(9): 2044-52, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25819333

ABSTRACT

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a promising target for antitumor therapy based on Top1 poison-mediated DNA damage. Several novel benzopentathiepines were synthesized and tested as inhibitors of TDP1 using a new oligonucleotide-based fluorescence assay. The benzopentathiepines have IC50 values in the range of 0.2-6.0 µM. According to the molecular modeling, the conformational flexibility of the dibutylamine group of the most effective inhibitor (3d) allows it to occupy an advantageous position for effective binding compared to its cyclic counterparts. The study of cytotoxicity of these compounds revealed that all compounds cause an apoptotic cell death in MCF-7 and Hep G2 cells. Therefore the new class of very effective inhibitors of TDP1 was elaborated.


Subject(s)
Dibenzothiepins/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Dibenzothiepins/chemical synthesis , Dibenzothiepins/chemistry , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/chemistry , Structure-Activity Relationship
11.
PLoS One ; 4(9): e7129, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-19774085

ABSTRACT

OBJECTIVE: To analyse the feasibility, cost and performance of rapid tuberculosis (TB) molecular and culture systems, in a high multidrug-resistant TB (MDR TB) middle-income region (Samara, Russia) and provide evidence for WHO policy change. METHODS: Performance and cost evaluation was conducted to compare the BACTEC MGIT 960 system for culture and drug susceptibility testing (DST) and molecular systems for TB diagnosis, resistance to isoniazid and rifampin, and MDR TB identification compared to conventional Lowenstein-Jensen culture assays. FINDINGS: 698 consecutive patients (2487 sputum samples) with risk factors for drug-resistant tuberculosis were recruited. Overall M. tuberculosis complex culture positivity rates were 31.6% (787/2487) in MGIT and 27.1% (675/2487) in LJ (90.5% and 83.2% for smear-positive specimens). In total, 809 cultures of M. tuberculosis complex were isolated by any method. Median time to detection was 14 days for MGIT and 36 days for LJ (10 and 33 days for smear positive specimens) and indirect DST in MGIT took 9 days compared to 21 days on LJ. There was good concordance between DST on LJ and MGIT (96.8% for rifampin and 95.6% for isoniazid). Both molecular hybridization assay results correlated well with MGIT DST results, although molecular assays generally yielded higher rates of resistance (by approximately 3% for both isoniazid and rifampin). CONCLUSION: With effective planning and logistics, the MGIT 960 and molecular based methodologies can be successfully introduced into a reference laboratory setting in a middle incidence country. High rates of MDR TB in the Russian Federation make the introduction of such assays particularly useful.


Subject(s)
Bacterial Typing Techniques , Communicable Disease Control/methods , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis/diagnosis , Bacteriological Techniques/methods , Cost-Benefit Analysis , Humans , Isoniazid/pharmacology , Microbial Sensitivity Tests , Phenotype , Rifampin/pharmacology , Risk Factors , Russia , Tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...