Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(15): e2317274121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38579010

ABSTRACT

Here, we describe the identification of an antibiotic class acting via LpxH, a clinically unexploited target in lipopolysaccharide synthesis. The lipopolysaccharide synthesis pathway is essential in most Gram-negative bacteria and there is no analogous pathway in humans. Based on a series of phenotypic screens, we identified a hit targeting this pathway that had activity on efflux-defective strains of Escherichia coli. We recognized common structural elements between this hit and a previously published inhibitor, also with activity against efflux-deficient bacteria. With the help of X-ray structures, this information was used to design inhibitors with activity on efflux-proficient, wild-type strains. Optimization of properties such as solubility, metabolic stability and serum protein binding resulted in compounds having potent in vivo efficacy against bloodstream infections caused by the critical Gram-negative pathogens E. coli and Klebsiella pneumoniae. Other favorable properties of the series include a lack of pre-existing resistance in clinical isolates, and no loss of activity against strains expressing extended-spectrum-ß-lactamase, metallo-ß-lactamase, or carbapenemase-resistance genes. Further development of this class of antibiotics could make an important contribution to the ongoing struggle against antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Lipopolysaccharides , Humans , Anti-Bacterial Agents/chemistry , Escherichia coli/metabolism , Gram-Negative Bacteria/metabolism , beta-Lactamases/genetics , Microbial Sensitivity Tests
2.
J Antimicrob Chemother ; 76(3): 606-615, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33221850

ABSTRACT

BACKGROUND: Mutations in RNA polymerase (RNAP) can reduce susceptibility to ciprofloxacin in Escherichia coli, but the mechanism of transcriptional reprogramming responsible is unknown. Strains carrying ciprofloxacin-resistant (CipR) rpoB mutations have reduced growth fitness and their impact on clinical resistance development is unclear. OBJECTIVES: To assess the potential for CipRrpoB mutations to contribute to resistance development by estimating the number of distinct alleles. To identify fitness-compensatory mutations that ameliorate the fitness costs of CipRrpoB mutations. To understand how CipRrpoB mutations reprogramme RNAP. METHODS: E. coli strains carrying five different CipRrpoB alleles were evolved with selection for improved fitness and characterized for acquired mutations, relative fitness and MICCip. The effects of dksA mutations and a ppGpp0 background on growth and susceptibility phenotypes associated with CipRrpoB alleles were determined. RESULTS: The number of distinct CipRrpoB mutations was estimated to be >100. Mutations in RNAP genes and in dksA can compensate for the fitness cost of CipRrpoB mutations. Deletion of dksA reduced the MICCip for strains carrying CipRrpoB alleles. A ppGpp0 phenotype had no effect on drug susceptibility. CONCLUSIONS: CipRrpoB mutations induce an ppGpp-independent stringent-like response. Approximately half of the reduction in ciprofloxacin susceptibility is caused by an increased affinity of RNAP to DksA while the other half is independent of DksA. Stringent-like response activating mutations might be the most diverse class of mutations reducing susceptibility to antibiotics.


Subject(s)
Escherichia coli Proteins , Guanosine Tetraphosphate , Anti-Bacterial Agents/pharmacology , DNA-Directed RNA Polymerases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial
3.
Front Microbiol ; 10: 2632, 2019.
Article in English | MEDLINE | ID: mdl-31803163

ABSTRACT

BACKGROUND: Colistin is a polypeptide antibiotic drug that targets lipopolysaccharides in the outer membrane of Gram-negative bacteria. Inactivation of the mgrB-gene is a common mechanism behind colistin-resistance in Klebsiella pneumoniae (Kpn). Since colistin is a cyclic polypeptide, it may exhibit cross-resistance with the antimicrobial peptide LL-37, and with other innate effector mechanisms, but previous results are inconclusive. OBJECTIVE: To study potential cross-resistance between colistin and LL-37, as well as with other innate effector mechanisms, and to compare virulence of colistin-resistant and susceptible Kpn strains. MATERIALS/METHODS: Carbapenemase-producing Kpn from Oman (n = 17) were subjected to antimicrobial susceptibility testing and whole genome sequencing. Susceptibility to colistin and LL-37 was studied. The surface charge was determined by zeta-potential measurements and the morphology of treated bacteria was analyzed with electron microscopy. Bacterial survival was assessed in human whole blood and serum, as well as in a zebrafish infection-model. RESULTS: Genome-analysis revealed insertion-sequences in the mgrB gene, as a cause of colistin resistance in 8/17 isolates. Colistin-resistant (Col-R) isolates were found to be more resistant to LL-37 compared to colistin-susceptible (Col-S) isolates, but only at concentrations ≥50 µg/ml. There was no significant difference in surface charge between the isolates. The morphological changes were similar in both Col-R and Col-S isolates after exposure to LL-37. Finally, no survival difference between the Col-R and Col-S isolates was observed in whole blood or serum, or in zebrafish embryos. CONCLUSION: Cross-resistance between colistin and LL-37 was observed at elevated concentrations of LL-37. However, Col-R and Col-S isolates exhibited similar survival in serum and whole blood, and in a zebrafish infection-model, suggesting that cross-resistance most likely play a limited role during physiological conditions. However, it cannot be ruled out that the observed cross-resistance could be relevant in conditions where LL-37 levels reach high concentrations, such as during infection or inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL
...