Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 15(681): eabq5241, 2023 02.
Article in English | MEDLINE | ID: mdl-36724238

ABSTRACT

In October 2019, Novartis launched brolucizumab, a single-chain variable fragment molecule targeting vascular endothelial growth factor A, for the treatment of neovascular age-related macular degeneration. In 2020, rare cases of retinal vasculitis and/or retinal vascular occlusion (RV/RO) were reported, often during the first few months after treatment initiation, consistent with a possible immunologic pathobiology. This finding was inconsistent with preclinical studies in cynomolgus monkeys that demonstrated no drug-related intraocular inflammation, or RV/RO, despite the presence of preexisting and treatment-emergent antidrug antibodies (ADAs) in some animals. In this study, the immune response against brolucizumab in humans was assessed using samples from clinical trials and clinical practice. In the brolucizumab-naïve population, anti-brolucizumab ADA responses were detected before any treatment, which was supported by the finding that healthy donors can harbor brolucizumab-specific B cells. This suggested prior exposure of the immune system to proteins with structural similarity. Experiments on samples showed that naïve and brolucizumab-treated ADA-positive patients developed a class-switched, high-affinity immune response, with several linear epitopes being recognized by ADAs. Only patients with RV/RO showed a meaningful T cell response upon recall with brolucizumab. Further studies in cynomolgus monkeys preimmunized against brolucizumab with adjuvant followed by intravitreal brolucizumab challenge demonstrated that high ADA titers were required to generate ocular inflammation and vasculitis/vascular thrombosis, comparable to RV/RO in humans. Immunogenicity therefore seems to be a prerequisite to develop RV/RO. However, because only 2.1% of patients with ADA develop RV/RO, additional factors must play a role in the development of RV/RO.


Subject(s)
Retinal Vasculitis , Animals , Humans , Adjuvants, Immunologic , Angiogenesis Inhibitors , Inflammation , Intravitreal Injections , Macaca fascicularis , Vascular Endothelial Growth Factor A
2.
Cell Rep ; 38(10): 110474, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263577

ABSTRACT

A main feature of Wiskott-Aldrich syndrome (WAS) is increased susceptibility to autoimmunity. A key contribution of B cells to development of these complications has been demonstrated through studies of samples from affected individuals and mouse models of the disease, but the role of the WAS protein (WASp) in controlling peripheral tolerance has not been specifically explored. Here we show that B cell responses remain T cell dependent in constitutive WASp-deficient mice, whereas selective WASp deletion in germinal center B cells (GCBs) is sufficient to induce broad development of self-reactive antibodies and kidney pathology, pointing to loss of germinal center tolerance as a primary cause leading to autoimmunity. Mechanistically, we show that WASp is upregulated in GCBs and regulates apoptosis and plasma cell differentiation in the germinal center and that the somatic hypermutation-derived diversification is the basis of autoantibody development.


Subject(s)
Wasps , Wiskott-Aldrich Syndrome , Animals , Apoptosis , Autoantibodies , Germinal Center/pathology , Mice , Mice, Knockout , Wiskott-Aldrich Syndrome/pathology
3.
Mol Cancer Ther ; 19(10): 2089-2104, 2020 10.
Article in English | MEDLINE | ID: mdl-32847974

ABSTRACT

The sole inhibitory Fcγ receptor CD32b (FcγRIIb) is expressed throughout B and plasma cell development and on their malignant counterparts. CD32b expression on malignant B cells is known to provide a mechanism of resistance to rituximab that can be ameliorated with a CD32b-blocking antibody. CD32b, therefore, represents an attractive tumor antigen for targeting with a monoclonal antibody (mAb). To this end, two anti-CD32b mAbs, NVS32b1 and NVS32b2, were developed. Their complementarity-determining regions (CDR) bind the CD32b Fc binding domain with high specificity and affinity while the Fc region is afucosylated to enhance activation of FcγRIIIa on immune effector cells. The NVS32b mAbs selectively target CD32b+ malignant cells and healthy B cells but not myeloid cells. They mediate potent killing of opsonized CD32b+ cells via antibody-dependent cellular cytotoxicity and phagocytosis (ADCC and ADCP) as well as complement-dependent cytotoxicity (CDC). In addition, NVS32b CDRs block the CD32b Fc-binding domain, thereby minimizing CD32b-mediated resistance to therapeutic mAbs including rituximab, obinutuzumab, and daratumumab. NVS32b mAbs demonstrate robust antitumor activity against CD32b+ xenografts in vivo and immunomodulatory activity including recruitment of macrophages to the tumor and enhancement of dendritic cell maturation in response to immune complexes. Finally, the activity of NVS32b mAbs on CD32b+ primary malignant B and plasma cells was confirmed using samples from patients with B-cell chronic lymphocytic leukemia (CLL) and multiple myeloma. The findings indicate the promising potential of NVS32b mAbs as a single agent or in combination with other mAb therapeutics for patients with CD32b+ malignant cells.


Subject(s)
Lymphoma, B-Cell/genetics , Neoplasms, Plasma Cell/genetics , Receptors, IgG/immunology , Animals , CHO Cells , Cricetulus , Humans
4.
Immunity ; 50(3): 668-676.e5, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30824324

ABSTRACT

Human polyomaviruses cause a common childhood infection worldwide and typically elicit a neutralizing antibody and cellular immune response, while establishing a dormant infection in the kidney with minimal clinical manifestations. However, viral reactivation can cause severe pathology in immunocompromised individuals. We developed a high-throughput, functional antibody screen to examine the humoral response to BK polyomavirus. This approach enabled the isolation of antibodies from all peripheral B cell subsets and revealed the anti-BK virus antibody repertoire as clonally complex with respect to immunoglobulin sequences and isotypes (both IgM and IgG), including a high frequency of monoclonal antibodies that broadly neutralize BK virus subtypes and the related JC polyomavirus. Cryo-electron microscopy of a broadly neutralizing IgG single-chain variable fragment complexed with BK virus-like particles revealed the quaternary nature of a conserved viral epitope at the junction between capsid pentamers. These features unravel a potent modality for inhibiting polyomavirus infection in kidney transplant recipients and other immunocompromised patients.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , BK Virus/immunology , Immunologic Memory/immunology , JC Virus/immunology , Polyomavirus Infections/immunology , Polyomavirus/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Capsid/immunology , Cell Line , Epitopes/immunology , HEK293 Cells , Humans , Immunity, Cellular/immunology , Kidney/immunology
5.
Nat Commun ; 7: 13027, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27708334

ABSTRACT

Type 1 diabetes (T1D) is characterized by a chronic, progressive autoimmune attack against pancreas-specific antigens, effecting the destruction of insulin-producing ß-cells. Here we show interleukin-2 (IL-2) is a non-pancreatic autoimmune target in T1D. Anti-IL-2 autoantibodies, as well as T cells specific for a single orthologous epitope of IL-2, are present in the peripheral blood of non-obese diabetic (NOD) mice and patients with T1D. In NOD mice, the generation of anti-IL-2 autoantibodies is genetically determined and their titre increases with age and disease onset. In T1D patients, circulating IgG memory B cells specific for IL-2 or insulin are present at similar frequencies. Anti-IL-2 autoantibodies cloned from T1D patients demonstrate clonality, a high degree of somatic hypermutation and nanomolar affinities, indicating a germinal centre origin and underscoring the synergy between cognate autoreactive T and B cells leading to defective immune tolerance.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Immune Tolerance , Interleukin-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Autoantibodies/immunology , Epitopes/immunology , Female , Humans , Immunoglobulin G/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Middle Aged , Pancreas/immunology , Peptides/immunology , T-Lymphocytes/cytology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...