Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 9(43): 25133-25141, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-35528651

ABSTRACT

In this paper, we investigate the structural and photoluminescence properties of aqueous solution-processed ZnO/GaAs and ZnO/porous GaAs films. According to X-ray diffraction (XRD) analysis, a ZnO film deposited on porous GaAs shows a monocrystalline structure with a-axis orientation, which is desirable for light emitting applications. The results obtained from atomic force microscopy (AFM) data confirm that a porous GaAs substrate is beneficial to deposit a uniform array of ZnO nanostructures with sizes down to 12 nm and a relatively low surface roughness (2.6 nm). Under excitation wavelength λ exc = 375 nm, ZnO/GaAs and ZnO/porous GaAs films showed emissions in most of the visible spectral region (450-750 nm). Our study reveals that changing the wavelength of the excitation UV radiation makes it possible to control the photoluminescence (PL) properties of ZnO films. Enhancement of the PL intensity was noticed in the UV and visible spectral regions when ZnO is deposited on porous GaAs, which is promising for optoelectronic device applications.

2.
Phys Rev Lett ; 88(15): 157203, 2002 Apr 15.
Article in English | MEDLINE | ID: mdl-11955217

ABSTRACT

Nucleation and annihilation of vortex states have been studied in two-dimensional arrays of densely packed cobalt dots. A clear signature of dipolar interactions both between single-domain state dots and vortex state dots has been observed from the dependence of vortex nucleation and annihilation fields on interdot separation. A direct consequence of these interactions is the formation of vortex chains as well as dipole chains aligned along the direction of the external field. In addition, short range correlation of chiralities within vortex chains has been observed using magnetic force microscopy imaging and has been attributed to cross-talking between adjacent elements.

3.
Phys Rev Lett ; 86(6): 1102-5, 2001 Feb 05.
Article in English | MEDLINE | ID: mdl-11178020

ABSTRACT

Measurements are reported on the magnetization reversal in submicron magnetic rings fabricated by high-resolution electron beam lithography and lift-off from cobalt thin films. For all dimensions investigated, with diameters of 300-800 nm and a thickness of 10-50 nm, the flux closure state is the stable magnetization configuration. However, with increasing diameter and decreasing film thickness a metastable near single domain state can be obtained during the reversal process in an in-plane applied field.

SELECTION OF CITATIONS
SEARCH DETAIL
...