Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
BMC Public Health ; 23(1): 1488, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542208

ABSTRACT

Epidemic Intelligence (EI) encompasses all activities related to early identification, verification, analysis, assessment, and investigation of health threats. It integrates an indicator-based (IBS) component using systematically collected surveillance data, and an event-based component (EBS), using non-official, non-verified, non-structured data from multiple sources. We described current EI practices in Europe by conducting a survey of national Public Health (PH) and Animal Health (AH) agencies. We included generic questions on the structure, mandate and scope of the institute, on the existence and coordination of EI activities, followed by a section where respondents provided a description of EI activities for three diseases out of seven disease models. Out of 81 gatekeeper agencies from 41 countries contacted, 34 agencies (42%) from 26 (63%) different countries responded, out of which, 32 conducted EI activities. Less than half (15/32; 47%) had teams dedicated to EI activities and 56% (18/34) had Standard Operating Procedures (SOPs) in place. On a national level, a combination of IBS and EBS was the most common data source. Most respondents monitored the epidemiological situation in bordering countries, the rest of Europe and the world. EI systems were heterogeneous across countries and diseases. National IBS activities strongly relied on mandatory laboratory-based surveillance systems. The collection, analysis and interpretation of IBS information was performed manually for most disease models. Depending on the disease, some respondents did not have any EBS activity. Most respondents conducted signal assessment manually through expert review. Cross-sectoral collaboration was heterogeneous. More than half of the responding institutes collaborated on various levels (data sharing, communication, etc.) with neighbouring countries and/or international structures, across most disease models. Our findings emphasise a notable engagement in EI activities across PH and AH institutes of Europe, but opportunities exist for better integration, standardisation, and automatization of these efforts. A strong reliance on traditional IBS and laboratory-based surveillance systems, emphasises the key role of in-country laboratories networks. EI activities may benefit particularly from investments in cross-border collaboration, the development of methods that can automatise signal assessment in both IBS and EBS data, as well as further investments in the collection of EBS data beyond scientific literature and mainstream media.


Subject(s)
Disease Outbreaks , Animals , Humans , Cross-Sectional Studies , Disease Outbreaks/prevention & control , Intelligence , Public Health , Surveys and Questionnaires
2.
HLA ; 102(4): 489-500, 2023 10.
Article in English | MEDLINE | ID: mdl-37106476

ABSTRACT

The major histocompatibility complex (MHC) with its class I and II genes plays a crucial role in the immune response to pathogens by presenting oligopeptide antigens to various immune response effector cells. In order to counteract the vast variability of infectious agents, MHC class I and II genes usually retain high levels of SNPs mainly concentrated in the exons encoding the antigen binding sites. The aim of the study was to reveal new variability of selected MHC genes with a special focus on MHC class I physical haplotypes. Long-range NGS to was used to identify exon 2-exon 3 alleles in three genetically distinct horse breeds. A total of 116 allelic variants were found in the MHC class I genes Eqca-1, Eqca-2, Eqca-7 and Eqca-Ψ, 112 of which were novel. The MHC class II DRA locus was confirmed to comprise five exon 2 alleles, and no new sequences were observed. Additional variability in terms of 15 novel exon 2 alleles was identified in the DQA1 locus. Extensive overall variability across the entire MHC region was confirmed by an analysis of MHC-linked microsatellite loci. Both diversifying and purifying selection were detected within the MHC class I and II loci analyzed.


Subject(s)
Genes, MHC Class II , Histocompatibility Antigens Class I , Horses/genetics , Animals , Alleles , Exons/genetics , Histocompatibility Antigens Class II/genetics , Major Histocompatibility Complex , Binding Sites
3.
J Vet Intern Med ; 36(6): 1858-1871, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36367340

ABSTRACT

Horses and other equids can be infected with several viruses of the family Flaviviridae, belonging to the genus Flavivirus and Hepacivirus. This consensus statement focuses on viruses with known occurrence in Europe, with the objective to summarize the current literature and formulate clinically relevant evidence-based recommendations regarding clinical disease, diagnosis, treatment, and prevention. The viruses circulating in Europe include West Nile virus, tick-borne encephalitis virus, Usutu virus, Louping ill virus and the equine hepacivirus. West Nile virus and Usutu virus are mosquito-borne, while tick-borne encephalitis virus and Louping ill virus are tick-borne. The natural route of transmission for equine hepacivirus remains speculative. West Nile virus and tick-borne encephalitis virus can induce encephalitis in infected horses. In the British Isle, rare equine cases of encephalitis associated with Louping ill virus are reported. In contrast, equine hepacivirus infections are associated with mild acute hepatitis and possibly chronic hepatitis. Diagnosis of flavivirus infections is made primarily by serology, although cross-reactivity occurs. Virus neutralization testing is considered the gold standard to differentiate between flavivirus infections in horses. Hepacivirus infection is detected by serum or liver RT-PCR. No direct antiviral treatment against flavi- or hepacivirus infections in horses is currently available and thus, treatment is supportive. Three vaccines against West Nile virus are licensed in the European Union. Geographic expansion of flaviviruses pathogenic for equids should always be considered a realistic threat, and it would be beneficial if their detection was included in surveillance programs.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis , Flaviviridae Infections , Flavivirus Infections , Horse Diseases , West Nile virus , Horses , Animals , Flavivirus Infections/diagnosis , Flavivirus Infections/epidemiology , Flavivirus Infections/prevention & control , Flavivirus Infections/veterinary , Flaviviridae Infections/veterinary , Europe/epidemiology , Encephalitis/veterinary , Horse Diseases/diagnosis , Horse Diseases/epidemiology , Horse Diseases/prevention & control
4.
Euro Surveill ; 27(25)2022 06.
Article in English | MEDLINE | ID: mdl-35748300

ABSTRACT

BackgroundWest Nile virus (WNV) and Usutu virus (USUV), two closely related flaviviruses, mainly follow an enzootic cycle involving mosquitoes and birds, but also infect humans and other mammals. Since 2010, their epidemiological situation may have shifted from irregular epidemics to endemicity in several European regions; this requires confirmation, as it could have implications for risk assessment and surveillance strategies.AimTo explore the seroprevalence in animals and humans and potential endemicity of WNV and USUV in Southern France, given a long history of WNV outbreaks and the only severe human USUV case in France in this region.MethodsWe evaluated the prevalence of WNV and USUV in a repeated cross-sectional study by serological and molecular analyses of human, dog, horse, bird and mosquito samples in the Camargue area, including the city of Montpellier, between 2016 and 2020.ResultsWe observed the active transmission of both viruses and higher USUV prevalence in humans, dogs, birds and mosquitoes, while WNV prevalence was higher in horses. In 500 human samples, 15 were positive for USUV and 6 for WNV. Genetic data showed that the same lineages, WNV lineage 1a and USUV lineage Africa 3, were found in mosquitoes in 2015, 2018 and 2020.ConclusionThese findings support existing literature suggesting endemisation in the study region and contribute to a better understanding of USUV and WNV circulation in Southern France. Our study underlines the importance of a One Health approach for the surveillance of these viruses.


Subject(s)
Culicidae , Flavivirus Infections , One Health , West Nile Fever , Animals , Birds/virology , Cross-Sectional Studies , Culicidae/virology , Dogs/virology , Flavivirus/genetics , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , France/epidemiology , Horses/virology , Humans , Seroepidemiologic Studies , West Nile Fever/epidemiology , West Nile Fever/veterinary , West Nile virus/genetics
5.
Transbound Emerg Dis ; 69(5): e2351-e2365, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35511405

ABSTRACT

We developed a correlative model at high resolution for predicting the distribution of one of the main vectors of Crimean-Congo haemorrhagic fever virus (CCHFV), Hyalomma marginatum, in a recently colonised area, namely southern France. About 931 H. marginatum adult ticks were sampled on horses from 2016 to 2019 and 2021 in 14 southern French departments, which resulted in the first H. marginatum detection map on a large portion of the national territory. Such updated presence/absence data, as well as the mean number of H. marginatum per examined animal (mean parasitic load) as a proxy of tick abundance, were correlated to multiple parameters describing the climate and habitats characterising each collection site, as well as movements of horses as possible factors influencing tick exposure. In southern France, H. marginatum was likely detected in areas characterised by year-long warm temperatures and low precipitation, especially in summer and mostly concentrated in autumn, as well as moderate annual humidity, compared to other sampled areas. It confirms that even in newly invaded areas this tick remains exclusively Mediterranean and cannot expand outside this climatic range. Regarding the environment, a predominance of open natural habitats, such as sclerophyllous vegetated and sparsely vegetated areas, were also identified as a favourable factor, in opposition to urban or peri-urban and humid habitats, such as continuous urban areas and inland marshes, respectively, which were revealed to be unsuitable. Based on this model, we predicted the areas currently suitable for the establishment of the tick H. marginatum in the South of France, with relatively good accuracy using internal (AUC = 0.66) and external validation methods (AUC = 0.76 and 0.83). Concerning tick abundance, some correlative relationships were similar to the occurrence model, as well as the type of horse movements being highlighted as an important factor explaining mean parasitic load. However, the limitations of estimating and modelling H. marginatum abundance in a correlative model are discussed.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Horse Diseases , Ixodidae , Ticks , Animals , France/epidemiology , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Horses
6.
Parasitol Res ; 121(3): 999-1008, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35128585

ABSTRACT

Equine piroplasmosis (EP) is a tick-borne disease caused by Babesia caballi and Theileria equi that is potentially emerging in non-endemic countries. We conducted a descriptive study to investigate EP prevalence and spatial distribution in an endemic region: the Camargue and the Plain of La Crau in France. In spring 2015 and 2016, we carried out sampling at stables (total n = 46) with a history of horses presenting chronic fever or weight loss. Overall, we collected blood from 632 horses, which were also inspected for ticks; these horses had been housed in the target stables for at least 1 year. We obtained 585 ticks from these horses and described land use around the stables. Real-time PCR was employed to assess T. equi and B. caballi prevalence in the horses and in the ticks found on the horses. For the horses, T. equi and B. caballi prevalence was 68.6% and 6.3%, respectively. For the ticks found on the horses, prevalence was 28.8% for T. equi and 0.85% for B. caballi. The most common tick species were, in order of frequency, Rhipicephalus bursa, R. sanguineus sl., Hyalomma marginatum, Haemaphysalis punctata, and Dermacentor sp. Horses bearing Rhipicephalus ticks occurred in wetter zones, closer to agricultural areas, permanent crops, and ditches, as well as in drier zones, in the more northern countryside. Compared to horses bearing R. bursa, horses bearing R. sanguineus sl. more frequently occurred near the Rhone River. Prevalence of T. equi in the ticks was as follows: Hyalomma marginatum (43%), Dermacentor sp. (40%), R. bursa (33%), R. sanguineus sl. (19%), and Haemaphysalis punctata (17%). In contrast, B. caballi only occurred in Dermacentor sp. (20%) and R. bursa (1%).


Subject(s)
Babesia , Babesiosis , Horse Diseases , Rhipicephalus , Theileria , Theileriasis , Animals , Babesia/genetics , Babesiosis/epidemiology , Cattle , Horse Diseases/epidemiology , Horses , Phylogeny , Prevalence , Theileria/genetics , Theileriasis/epidemiology
7.
J Antimicrob Chemother ; 75(6): 1525-1529, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32049276

ABSTRACT

OBJECTIVES: To characterize and compare resistance trends in clinical Escherichia coli isolates from humans, food-producing animals (poultry, cattle and swine) and pets (dogs and cats). METHODS: Antibiogram results collected between January 2014 and December 2017 by MedQual [the French surveillance network for antimicrobial resistance (AMR) in bacteria isolated from the community] and RESAPATH (the French surveillance network for AMR in bacteria from diseased animals) were analysed, focusing on resistance to antibiotics of common interest to human and veterinary medicine. Resistance dynamics were investigated using generalized additive models. RESULTS: In total, 743 637 antibiograms from humans, 48 170 from food-producing animals and 7750 from pets were analysed. For each antibiotic investigated, the resistance proportions of isolates collected from humans were of the same order of magnitude as those from food-producing animals or pets. However, resistance trends in humans differed from those observed in pets and food-producing animals over the period studied. For example, resistance to third-generation cephalosporins and fluoroquinolones was almost always below 10% for both humans and animals. However, in contrast to the notable decreases in resistance observed in both food-producing animals and pets, resistance in humans decreased only slightly. CONCLUSIONS: Despite several potential biases in the data, the resistance trends remain meaningful. The strength of the parallel is based on similar data collection in humans and animals and on a similar statistical methodology. Resistance dynamics seemed specific to each species, reflecting different antibiotic-use practices. These results advocate applying the efforts already being made to reduce antibiotic use to all sectors and all species, both in human and veterinary medicine.


Subject(s)
Cat Diseases , Dog Diseases , Escherichia coli Infections , Animals , Anti-Bacterial Agents/pharmacology , Cats , Cattle , Dogs , Drug Resistance, Bacterial , Escherichia coli , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Humans , Microbial Sensitivity Tests , Poultry , Swine
8.
Viruses ; 12(1)2019 12 24.
Article in English | MEDLINE | ID: mdl-31878129

ABSTRACT

Neurological disorders represent an important sanitary and economic threat for the equine industry worldwide. Among nervous diseases, viral encephalitis is of growing concern, due to the emergence of arboviruses and to the high contagiosity of herpesvirus-infected horses. The nature, severity and duration of the clinical signs could be different depending on the etiological agent and its virulence. However, definite diagnosis generally requires the implementation of combinations of direct and/or indirect screening assays in specialized laboratories. The equine practitioner, involved in a mission of prevention and surveillance, plays an important role in the clinical diagnosis of viral encephalitis. The general management of the horse is essentially supportive, focused on controlling pain and inflammation within the central nervous system, preventing injuries and providing supportive care. Despite its high medical relevance and economic impact in the equine industry, vaccines are not always available and there is no specific antiviral therapy. In this review, the major virological, clinical and epidemiological features of the main neuropathogenic viruses inducing encephalitis in equids in Europe, including rabies virus (Rhabdoviridae), Equid herpesviruses (Herpesviridae), Borna disease virus (Bornaviridae) and West Nile virus (Flaviviridae), as well as exotic viruses, will be presented.


Subject(s)
Encephalomyelitis, Equine/veterinary , Horse Diseases/epidemiology , Horse Diseases/virology , Viruses/pathogenicity , Animals , Arboviruses/pathogenicity , Bornaviridae/pathogenicity , Encephalomyelitis, Equine/complications , Encephalomyelitis, Equine/epidemiology , Europe/epidemiology , Herpesviridae/pathogenicity , Horses , Humans , Rhabdoviridae/pathogenicity , Viruses/classification , West Nile virus/pathogenicity
9.
Front Microbiol ; 10: 2288, 2019.
Article in English | MEDLINE | ID: mdl-31649635

ABSTRACT

OBJECTIVES: To examine the relevance of co-resistance to amoxicillin and tetracycline as an indicator of multidrug resistance (MDR) in animal health. METHODS: Escherichia coli isolates collected between 2012 and 2016 by the French surveillance network for antimicrobial resistance in diseased animals (RESAPATH) were analyzed. The proportions of MDR isolates and the proportions of isolates presenting co-resistance to amoxicillin and tetracycline were calculated for seven animal species (cattle, horse, dog, swine, poultry, duck, and turkey). The degree of agreement between these two proportions was estimated by calculating the kappa value. RESULTS: In total, 55,904 isolates were analyzed. MDR proportions were variable among animal species, ranging from 21.9% [20.2; 23.7] in horses to 56.0% [55.4; 56.7] in cattle. A similar situation was observed for proportions of isolates with co-resistance to amoxicillin and tetracycline, with the highest value for cattle 65.0% [64.3; 65.6]. This co-resistance was also most often associated with resistance to other antibiotics, regardless of the animal species considered. Comparative analysis showed substantial agreement between MDR and this co-resistance, with a kappa value of 0.75, all animal species considered. CONCLUSION: Given the widespread use of penicillins and tetracyclines in animal health, co-resistance to amoxicillin and tetracycline could be an efficient indicator of MDR in E. coli isolates. Based on a specific resistance profile and not an arbitrary number of resistances compared with MDR, this potential indicator is also precise, convenient and suitable for routine use.

10.
Vet Microbiol ; 235: 280-284, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31383313

ABSTRACT

Surveillance of Pasteurella multocida resistance in food-producing animals is essential to guide the first-line treatment of respiratory diseases and to limit economic losses. Since Pasteurella are the most common bacteria isolated from dog and cat bites, this surveillance is also needed to guide treatment in humans in case of bites. The aim of this study was to characterize the phenotypic resistance of P. multocida strains isolated from respiratory infections in animals, including both food-producing animals and pets. Data collected between 2012 and 2017 by the French national surveillance network for antimicrobial resistance referred to as RESAPATH were analyzed. The proportions of resistance to antimicrobials of relevance in veterinary and human medicines were estimated for each animal species. For cattle, resistance trends over the period were investigated using non-linear analysis applied to time-series. In total, 5356 P. multocida isolates were analyzed. Proportions of resistance of P. multocida were almost all below 20% over the period, and, more precisely, all resistance proportions were below 10% for rabbits, sheep and dogs. The highest resistance proportions to enrofloxacin were identified for cattle (4.5%) and dogs (5.2%). Despite its frequent use in livestock, resistance to florfenicol was less than 1% in P. multocida strains, regardless of the animal species considered. Time series analyses revealed continuous increases in resistance to tetracycline, tilmicosin, flumequine and fluoroquinolones in P. multocida strains isolated from cattle. These trends contrast with the decrease in use of antibiotics in cattle in France and with the decrease in resistance observed in E. coli isolated from diseased cattle.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Livestock/microbiology , Pasteurella Infections/veterinary , Pasteurella multocida/drug effects , Pets/microbiology , Respiratory Tract Infections/veterinary , Animals , Cattle/microbiology , Dogs/microbiology , France/epidemiology , Meat/microbiology , Microbial Sensitivity Tests , Pasteurella Infections/epidemiology , Pasteurella multocida/isolation & purification , Rabbits/microbiology , Respiratory Tract Infections/microbiology
11.
Transbound Emerg Dis ; 66(3): 1417-1419, 2019 May.
Article in English | MEDLINE | ID: mdl-30773844

ABSTRACT

Few studies about the use of quantitative equine mortality data for monitoring purposes are available. Our study evaluated the utility of monitoring emerging equine diseases using mortality data collected by rendering plants. We used approaches involving modelling of historical mortality fluctuations and detection algorithm methods to analyse changes in equine mortality in connection with the West Nile Virus (WNV) outbreak that occurred between July and September 2015 along the Mediterranean coast of France. Two weeks after the first equine WNV case was detected by clinical surveillance, detection algorithms identified excess mortality. The temporal distribution of this excess mortality suggested that it was related to the WNV outbreak, which may helped to assess the impact of the WNV epizootic on equine mortality. The results suggest that real-time follow-up of mortality could be a useful tool for equine health surveillance.


Subject(s)
Disease Outbreaks/veterinary , Horse Diseases/epidemiology , West Nile Fever/veterinary , West Nile virus/isolation & purification , Animals , France/epidemiology , Horse Diseases/virology , Horses , West Nile Fever/epidemiology , West Nile Fever/virology
13.
Prev Vet Med ; 162: 95-106, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30621904

ABSTRACT

A potentially sensitive way to detect disease outbreaks is syndromic surveillance, i.e. monitoring the number of syndromes reported in the population of interest, comparing it to the baseline rate, and drawing conclusions about outbreaks using statistical methods. A decision maker may use the results to take disease control actions or to initiate enhanced epidemiological investigations. In addition to the total count of syndromes there are often additional pieces of information to consider when assessing the probability of an outbreak. This includes clustering of syndromes in space and time as well as historical data on the occurrence of syndromes, seasonality of the disease, etc. In this paper, we show how Bayesian theory for syndromic surveillance applies to the occurrence of neurological syndromes in horses in France. Neurological syndromes in horses may be connected e.g. to West Nile Virus (WNV), a zoonotic disease of growing concern for public health in Europe. A Bayesian method for spatio-temporal cluster detection of syndromes and for determining the probability of an outbreak is presented. It is shown how surveillance can be performed simultaneously for a specific class of diseases (WNV or diseases similar to WNV in terms of the information available to the system) and a non-specific class of diseases (not similar to WNV in terms of the information available to the system). We also discuss some new extensions to the spatio-temporal models and the computational algorithms involved. It is shown step-by-step how data from historical WNV outbreaks and surveillance data for neurological syndromes can be used for model construction. The model is implemented using a Gibbs sampling procedure, and its sensitivity and specificity is evaluated. Finally, it is illustrated how predictive modelling of syndromes can be useful for decision making in animal health surveillance.


Subject(s)
Horse Diseases/epidemiology , Sentinel Surveillance/veterinary , West Nile Fever/veterinary , Algorithms , Animals , Bayes Theorem , Disease Outbreaks/veterinary , France/epidemiology , Horses , Nervous System Diseases/epidemiology , Nervous System Diseases/veterinary , Spatio-Temporal Analysis , West Nile Fever/epidemiology
14.
Prev Vet Med ; 159: 123-134, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30314775

ABSTRACT

For public health reasons, increasing attention has focused on more rational use of antimicrobials in farm animals. Guidance concerning the prescription of antibiotics and antimicrobial susceptibility testing (antibiograms in this case) are beneficial tools to help control the development of antimicrobial resistance. Nevertheless, even though there are already several qualitative studies analysing the determinants of antimicrobial prescription and use in veterinary medicine, little is known about decision-making concerning the use of antibiograms. The aim of this study was to provide a better understanding of veterinarians' motivations and role-players' influence concerning the choice of whether to ask for an antibiogram in the bovine, porcine, poultry and equine sectors in France. We concurrently evaluated the impact of a new French decree (2016) requiring an antibiogram before certain critically important antimicrobial agents can be used in veterinary medicine. Semi-structured interviews with veterinarians were conducted in France. Thematic analysis was used to analyse transcripts. In all, we surveyed 66 veterinarians. Use of antibiograms in veterinary medicine was multifactorial - 46 factors grouped into 11 categories were identified - and differed between animal sectors: use was almost systematic in poultry, frequent in pigs and rare in both the bovine and equine sectors. The decree has not increased the use of antibiograms but has induced a change in prescriptions due to field constraints and the time needed to obtain the results of antibiograms. Respondents see the decree as an aid in promoting responsible and rational use of antibiotics, fostering the use of alternatives. Our findings provide the basis of veterinarians' position regarding antibiogram use and antimicrobial resistance, pointing out levers to facilitate the use of antibiograms in veterinary medicine (for example communication on the benefits of this test and external financial support). Furthermore, the evaluation of the impact of the decree aimed at reducing the use of critically important antibiotic highlights key factors for a successful change in regulations, such as advance planning, precise and adapted communication, and demonstration of the measure's legitimacy. These results will be useful in guiding representative veterinary bodies and regulatory authorities during their decision-making, communication, and policy and regulation choices to combat antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Clinical Competence , Decision Making , Microbial Sensitivity Tests/veterinary , Veterinarians/psychology , Animals , Animals, Domestic , France , Microbial Sensitivity Tests/statistics & numerical data
15.
Vet Microbiol ; 223: 72-78, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30173755

ABSTRACT

Categorized by WHO as critically important antibiotics, third-generation cephalosporins (3GCs) are one of the latest therapeutic alternatives to fight severe infectious diseases in humans. Some antibiotics belonging to this class are prescribed to treat food-producing animals in specific pathological contexts. Preserving the effectiveness of 3GCs requires characterization and careful monitoring of 3GCs resistance and the identification and implementation of measures that can limit this antimicrobial resistance (AMR). Here, we characterized the 3GCs resistance in Escherichia coli isolated from diseased animals. Using data collected from broilers, hens, calves, piglets, sows, turkeys and ducks between 2006 and 2016 by the French surveillance network of AMR in pathogenic bacteria of animal origin (called RESAPATH), we investigated the dynamics of resistance to 3GCs. Our non-linear analysis applied to time series showed that the evolution of E. coli resistance to 3GCs is specific to each animal category. From 2006 to 2010, resistance to 3GCs increased for most animal categories. We observed peaks of high-level of resistance for hens (21.5% in 2010) and broilers (26.7% in 2011), whereas trends stayed below 10% for the other animal categories throughout the study period. Resistance later decreased and, since 2014, 3GCs resistance has dropped below 10% for all animal categories. The parallel between trends and measures to limit AMR over the period shed lights on the impact of practices changes, public policies (EcoAntibio Plan) and sector-led initiatives (moratorium in swine sector). Finally, they highlight the usefulness and importance of AMR surveillance networks in animal health, such as RESAPATH.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cattle Diseases/epidemiology , Cephalosporins/pharmacology , Escherichia coli Infections/veterinary , Escherichia coli/drug effects , Poultry Diseases/epidemiology , Swine Diseases/epidemiology , Animals , Cattle , Cattle Diseases/drug therapy , Cattle Diseases/microbiology , Epidemiological Monitoring , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Food Microbiology , Poultry , Poultry Diseases/drug therapy , Poultry Diseases/microbiology , Swine , Swine Diseases/drug therapy , Swine Diseases/microbiology
16.
J Dairy Sci ; 101(10): 9451-9462, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30100506

ABSTRACT

In dairy cattle, mastitis is the most frequent bacterial disease, and the routine use of antibiotics for treatment and prevention can drive antimicrobial resistance (AMR). The aim of our study was to estimate the levels of AMR of the 3 main bacteria isolated from dairy cattle with mastitis in France (Streptococcus uberis, Escherichia coli, and coagulase-positive staphylococci) and to investigate their changes over time. Data collected between 2006 and 2016 by the French surveillance network for AMR in pathogenic bacteria of animal origin (called RESAPATH) were analyzed. The proportions of mono- and multidrug resistance were calculated and the trends were investigated using nonlinear analyses applied to time series. Over the whole period, the lowest proportions of resistance in S. uberis isolates were observed for oxacillin (2.2%) and gentamicin (2.4%) and most resistance levels were below 20%. The trends in resistance showed some significant variation, mainly for S. uberis, but without a common pattern across the various antibiotics examined. For only 2 combinations of bacteria-antibiotic the trend in resistance showed a continuous increase from 2006 to 2016: tetracycline resistance in S. uberis isolates and third-generation cephalosporin resistance in E. coli isolates. In E. coli, the highest proportions of resistance were observed for amoxicillin (28.1%) and tetracycline (23.1%). Resistance to third-generation cephalosporins in E. coli from dairy cattle was almost nil in 2006, but reached 2.4% in December 2016. This increase is particularly concerning because these antibiotics constitute one of the latest therapeutic alternatives to fight severe infectious diseases in humans. Except for penicillin (33.9%), the proportions of resistance in coagulase-positive staphylococci were below 11% during the whole study period. Multidrug resistance (isolates with acquired resistance to at least one antibiotic in 3 or more antibiotic classes) ranged from 2.4% for coagulase-positive staphylococci to 9.9% for S. uberis. These findings can serve as guidelines for practitioners in the choice of the most appropriate antibiotic according to the prevailing epidemiological context. Ultimately, our results contribute to risk assessment of AMR and provide a baseline for setting up and evaluating control measures and designing strategies to limit AMR.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Mastitis, Bovine/drug therapy , Mastitis, Bovine/microbiology , Microbial Sensitivity Tests/veterinary , Animals , Cattle , Dairying , Escherichia coli , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Female , France , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Streptococcal Infections/drug therapy , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary
17.
Vet Microbiol ; 215: 49-56, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29426406

ABSTRACT

Coxiella burnetii can infect many animal species, but its circulation dynamics in and through horses is still unclear. This study evaluated horse exposure in an area known to be endemic for ruminants and humans. We assessed antibody prevalence in horse serum by ELISA, and screened by qPCR horse blood, ticks found on horses and dust from stables. Horse seroprevalence was 4% (n = 335, 37 stables) in 2015 and 12% (n = 294, 39 stables) in 2016. Of 199 horses sampled both years, 13 seroconverted, eight remained seropositive, and one seroreverted. Seropositive horses were located close to reported human cases, yet none displayed Q fever-compatible syndromes. Coxiella DNA was detected in almost 40% of collected ticks (n = 59/148 in 2015; n = 103/305 in 2016), occasionally in dust (n = 3/46 in 2015; n = 1/14 in 2016) but never in horse blood. Further studies should be implemented to evaluate if horses may be relevant indicators of zoonotic risk in urban and suburban endemic areas.


Subject(s)
Antibodies, Bacterial/blood , Coxiella burnetii/physiology , Horse Diseases/epidemiology , Q Fever/veterinary , Animals , Coxiella burnetii/genetics , DNA, Bacterial/genetics , Enzyme-Linked Immunosorbent Assay , Horse Diseases/blood , Horses , Polymerase Chain Reaction , Q Fever/blood , Q Fever/epidemiology , Seroepidemiologic Studies , Ticks/microbiology
18.
Parasit Vectors ; 10(1): 371, 2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28764743

ABSTRACT

BACKGROUND: Anaplasma phagocytophilum is a zoonotic tick-borne pathogen responsible for granulocytic anaplasmosis, a mild to a severe febrile disease that affects man and several animal species, including cows and horses. In Europe, I. ricinus is the only proven vector for this pathogen, but studies suggest that other tick genera and species could be involved in its transmission. Our objective was to assess the presence and genetic diversity of A. phagocytophilum in domestic animals and different tick species from the Camargue region, located in the south of France. METHODS: A total of 140 ticks and blood samples from 998 cattle and 337 horses were collected in Camargue and tested for the presence of A. phagocytophilum DNA by msp2 quantitative real-time PCR. Molecular typing with four markers was performed on positive samples. RESULTS: Anaplasma phagocytophilum DNA was detected in 6/993 (0.6%) cows, 1/20 (5%) Haemaphysalis punctata, 1/57 (1.75%) Rhipicephalus pusillus, and was absent in horses (0%). All cattle A. phagocytophilum presented a profile identical to an A. phagocytophilum variant previously detected in Dermacentor marginatus, Hyalomma marginatum, and Rhipicephalus spp. in Camargue. CONCLUSIONS: Our results demonstrate that one particular A. phagocytophilum variant infects cattle in Camargue, where I. ricinus is supposed to be rare or even absent. Dermacentor marginatus, Rhipicephalus spp. and Hyalomma spp., and possibly other tick species could be involved in the transmission of this variant in this region.


Subject(s)
Anaplasma phagocytophilum/genetics , Anaplasmosis/microbiology , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Tick Infestations/veterinary , Anaplasma phagocytophilum/isolation & purification , Anaplasmosis/epidemiology , Anaplasmosis/transmission , Animals , Cattle , Cattle Diseases/transmission , DNA, Bacterial , Dermacentor/microbiology , France/epidemiology , Genetic Variation , Horses , Ixodidae/microbiology , Real-Time Polymerase Chain Reaction , Rhipicephalus/microbiology , Tick Infestations/microbiology
19.
Infect Genet Evol ; 55: 31-44, 2017 11.
Article in English | MEDLINE | ID: mdl-28807858

ABSTRACT

Anaplasma phagocytophilum is a bacterial pathogen mainly transmitted by Ixodes ricinus ticks in Europe. It infects wild mammals, livestock, and, occasionally, humans. Roe deer are considered to be the major reservoir, but the genotypes they carry differ from those that are found in livestock and humans. Here, we investigated whether roe deer were the main source of the A. phagocytophilum genotypes circulating in questing I. ricinus nymphs in a fragmented agricultural landscape in France. First, we assessed pathogen prevalence in 1837 I. ricinus nymphs (sampled along georeferenced transects) and 79 roe deer. Prevalence was dramatically different between ticks and roe deer: 1.9% versus 76%, respectively. Second, using high-throughput amplicon sequencing, we characterized the diversity of the A. phagocytophilum genotypes found in 22 infected ticks and 60 infected roe deer; the aim was to determine the frequency of co-infections. Only 22.7% of infected ticks carried genotypes associated with roe deer. This finding fits with others suggesting that cattle density is the major factor explaining infected tick density. To explore epidemiological scenarios capable of explaining these patterns, we constructed compartmental models that focused on how A. phagocytophilum exposure and infection dynamics affected pathogen prevalence in roe deer. At the exposure levels predicted by the results of this study and the literature, the high prevalence in roe deer was only seen in the model in which superinfections could occur during all infection phases and when the probability of infection post exposure was above 0.43. We then interpreted these results from the perspective of livestock and human health.


Subject(s)
Anaplasma phagocytophilum/classification , Anaplasma phagocytophilum/genetics , Animal Diseases/microbiology , Deer/microbiology , Ehrlichiosis/veterinary , Host Specificity , Livestock/microbiology , Ticks/microbiology , Agriculture , Animal Diseases/epidemiology , Animal Diseases/transmission , Animals , Bacterial Typing Techniques , Disease Reservoirs , Environmental Exposure , Genotype , Humans , Phylogeny , Prevalence , Superinfection
20.
Ecohealth ; 14(3): 474-489, 2017 09.
Article in English | MEDLINE | ID: mdl-28584951

ABSTRACT

West Nile disease, caused by the West Nile virus (WNV), is a mosquito-borne zoonotic disease affecting humans and horses that involves wild birds as amplifying hosts. The mechanisms of WNV transmission remain unclear in Europe where the occurrence of outbreaks has dramatically increased in recent years. We used a dataset on the competence, distribution, abundance, diversity and dispersal of wild bird hosts and mosquito vectors to test alternative hypotheses concerning the transmission of WNV in Southern France. We modelled the successive processes of introduction, amplification, dispersal and spillover of WNV to incidental hosts based on host-vector contact rates on various land cover types and over four seasons. We evaluated the relative importance of the mechanisms tested using two independent serological datasets of WNV antibodies collected in wild birds and horses. We found that the same transmission processes (seasonal virus introduction by migratory birds, Culex modestus mosquitoes as amplifying vectors, heterogeneity in avian host competence, absence of 'dilution effect') best explain the spatial variations in WNV seroprevalence in the two serological datasets. Our results provide new insights on the pathways of WNV introduction, amplification and spillover and the contribution of bird and mosquito species to WNV transmission in Southern France.


Subject(s)
Animals, Wild/virology , Birds/virology , Culex/virology , Disease Outbreaks/statistics & numerical data , Horses/virology , West Nile Fever/transmission , Zoonoses/transmission , Animals , France/epidemiology , Humans , Seroepidemiologic Studies , West Nile Fever/epidemiology , West Nile virus/isolation & purification , Zoonoses/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...