Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
JAMA Cardiol ; 9(3): 263-271, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38294787

ABSTRACT

Importance: Familial hypercholesterolemia (FH) is a genetic disorder that often results in severely high low-density lipoprotein cholesterol (LDL-C) and high risk of premature coronary heart disease (CHD). However, the impact of FH variants on CHD risk among individuals with moderately elevated LDL-C is not well quantified. Objective: To assess CHD risk associated with FH variants among individuals with moderately (130-189 mg/dL) and severely (≥190 mg/dL) elevated LDL-C and to quantify excess CHD deaths attributable to FH variants in US adults. Design, Setting, and Participants: A total of 21 426 individuals without preexisting CHD from 6 US cohort studies (Atherosclerosis Risk in Communities study, Coronary Artery Risk Development in Young Adults study, Cardiovascular Health Study, Framingham Heart Study Offspring cohort, Jackson Heart Study, and Multi-Ethnic Study of Atherosclerosis) were included, 63 of whom had an FH variant. Data were collected from 1971 to 2018, and the median (IQR) follow-up was 18 (13-28) years. Data were analyzed from March to May 2023. Exposures: LDL-C, cumulative past LDL-C, FH variant status. Main Outcomes and Measures: Cox proportional hazards models estimated associations between FH variants and incident CHD. The Cardiovascular Disease Policy Model projected excess CHD deaths associated with FH variants in US adults. Results: Of the 21 426 individuals without preexisting CHD (mean [SD] age 52.1 [15.5] years; 12 041 [56.2%] female), an FH variant was found in 22 individuals with moderately elevated LDL-C (0.3%) and in 33 individuals with severely elevated LDL-C (2.5%). The adjusted hazard ratios for incident CHD comparing those with and without FH variants were 2.9 (95% CI, 1.4-6.0) and 2.6 (95% CI, 1.4-4.9) among individuals with moderately and severely elevated LDL-C, respectively. The association between FH variants and CHD was slightly attenuated when further adjusting for baseline LDL-C level, whereas the association was no longer statistically significant after adjusting for cumulative past LDL-C exposure. Among US adults 20 years and older with no history of CHD and LDL-C 130 mg/dL or higher, more than 417 000 carry an FH variant and were projected to experience more than 12 000 excess CHD deaths in those with moderately elevated LDL-C and 15 000 in those with severely elevated LDL-C compared with individuals without an FH variant. Conclusions and Relevance: In this pooled cohort study, the presence of FH variants was associated with a 2-fold higher CHD risk, even when LDL-C was only moderately elevated. The increased CHD risk appeared to be largely explained by the higher cumulative LDL-C exposure in individuals with an FH variant compared to those without. Further research is needed to assess the value of adding genetic testing to traditional phenotypic FH screening.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Coronary Artery Disease , Hypercholesterolemia , Hyperlipoproteinemia Type II , Young Adult , Humans , Female , Middle Aged , Male , Hypercholesterolemia/complications , Cholesterol, LDL/genetics , Cardiovascular Diseases/prevention & control , Cohort Studies , Risk Factors , Hyperlipoproteinemia Type II/diagnosis , Coronary Artery Disease/complications , Atherosclerosis/complications , Heart Disease Risk Factors
2.
Genet Med ; 26(3): 101036, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38054408

ABSTRACT

PURPOSE: Genetic variants at the low end of the penetrance spectrum have historically been challenging to interpret because their high population frequencies exceed the disease prevalence of the associated condition, leading to a lack of clear segregation between the variant and disease. There is currently substantial variation in the classification of these variants, and no formal classification framework has been widely adopted. The Clinical Genome Resource Low Penetrance/Risk Allele Working Group was formed to address these challenges and promote harmonization within the clinical community. METHODS: The work presented here is the product of internal and community Likert-scaled surveys in combination with expert consensus within the Working Group. RESULTS: We formally recognize risk alleles and low-penetrance variants as distinct variant classes from those causing highly penetrant disease that require special considerations regarding their clinical classification and reporting. First, we provide a preferred terminology for these variants. Second, we focus on risk alleles and detail considerations for reviewing relevant studies and present a framework for the classification these variants. Finally, we discuss considerations for clinical reporting of risk alleles. CONCLUSION: These recommendations support harmonized interpretation, classification, and reporting of variants at the low end of the penetrance spectrum.


Subject(s)
Genetic Variation , Humans , Alleles , Genetic Variation/genetics , Penetrance , Gene Frequency
3.
Am J Hum Genet ; 110(11): 1841-1852, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37922883

ABSTRACT

Polygenic risk scores (PRSs) hold promise for disease risk assessment and prevention. The Genomic Medicine at Veterans Affairs (GenoVA) Study is addressing three main challenges to the clinical implementation of PRSs in preventive care: defining and determining their clinical utility, implementing them in time-constrained primary care settings, and countering their potential to exacerbate healthcare disparities. The study processes used to test patients, report their PRS results to them and their primary care providers (PCPs), and promote the use of those results in clinical decision-making are modeled on common practices in primary care. The following diseases were chosen for their prevalence and familiarity to PCPs: coronary artery disease; type 2 diabetes; atrial fibrillation; and breast, colorectal, and prostate cancers. A randomized clinical trial (RCT) design and primary outcome of time-to-new-diagnosis of a target disease bring methodological rigor to the question of the clinical utility of PRS implementation. The study's pragmatic RCT design enhances its relevance to how PRS might reasonably be implemented in primary care. Steps the study has taken to promote health equity include the thoughtful handling of genetic ancestry in PRS construction and reporting and enhanced recruitment strategies to address underrepresentation in research participation. To date, enhanced recruitment efforts have been both necessary and successful: participants of underrepresented race and ethnicity groups have been less likely to enroll in the study than expected but ultimately achieved proportional representation through targeted efforts. The GenoVA Study experience to date offers insights for evaluating the clinical utility of equitable PRS implementation in adult primary care.


Subject(s)
Diabetes Mellitus, Type 2 , Prostatic Neoplasms , Adult , Humans , Male , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Primary Health Care , Prostatic Neoplasms/genetics , Randomized Controlled Trials as Topic , Risk Assessment , Risk Factors
4.
medRxiv ; 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37961173

ABSTRACT

Mass General Brigham, an integrated healthcare system based in the Greater Boston area of Massachusetts, annually serves 1.5 million patients. We established the Mass General Brigham Biobank (MGBB), encompassing 142,238 participants, to unravel the intricate relationships among genomic profiles, environmental context, and disease manifestations within clinical practice. In this study, we highlight the impact of ancestral diversity in the MGBB by employing population genetics, geospatial assessment, and association analyses of rare and common genetic variants. The population structures captured by the genetics mirror the sequential immigration to the Greater Boston area throughout American history, highlighting communities tied to shared genetic and environmental factors. Our investigation underscores the potency of unbiased, large-scale analyses in a healthcare-affiliated biobank, elucidating the dynamic interplay across genetics, immigration, structural geospatial factors, and health outcomes in one of the earliest American sites of European colonization.

5.
Genet Med ; 25(12): 100947, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37534744

ABSTRACT

PURPOSE: Variants of uncertain significance (VUS) are a common result of diagnostic genetic testing and can be difficult to manage with potential misinterpretation and downstream costs, including time investment by clinicians. We investigated the rate of VUS reported on diagnostic testing via multi-gene panels (MGPs) and exome and genome sequencing (ES/GS) to measure the magnitude of uncertain results and explore ways to reduce their potentially detrimental impact. METHODS: Rates of inconclusive results due to VUS were collected from over 1.5 million sequencing test results from 19 clinical laboratories in North America from 2020 to 2021. RESULTS: We found a lower rate of inconclusive test results due to VUSs from ES/GS (22.5%) compared with MGPs (32.6%; P < .0001). For MGPs, the rate of inconclusive results correlated with panel size. The use of trios reduced inconclusive rates (18.9% vs 27.6%; P < .0001), whereas the use of GS compared with ES had no impact (22.2% vs 22.6%; P = ns). CONCLUSION: The high rate of VUS observed in diagnostic MGP testing warrants examining current variant reporting practices. We propose several approaches to reduce reported VUS rates, while directing clinician resources toward important VUS follow-up.


Subject(s)
Genetic Predisposition to Disease , Genetic Testing , Humans , Genetic Testing/methods , Genomics , Exome/genetics , North America
6.
Am J Hum Genet ; 110(7): 1034-1045, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37279760

ABSTRACT

Newborn genomic sequencing (NBSeq) to screen for medically important genetic information is of considerable interest but data characterizing the actionability of such findings, and the downstream medical efforts in response to discovery of unanticipated genetic risk variants, are lacking. From a clinical trial of comprehensive exome sequencing in 127 apparently healthy infants and 32 infants in intensive care, we previously identified 17 infants (10.7%) with unanticipated monogenic disease risks (uMDRs). In this analysis, we assessed actionability for each of these uMDRs with a modified ClinGen actionability semiquantitative metric (CASQM) and created radar plots representing degrees of penetrance of the condition, severity of the condition, effectiveness of intervention, and tolerability of intervention. In addition, we followed each of these infants for 3-5 years after disclosure and tracked the medical actions prompted by these findings. All 17 uMDR findings were scored as moderately or highly actionable on the CASQM (mean 9, range: 7-11 on a 0-12 scale) and several distinctive visual patterns emerged on the radar plots. In three infants, uMDRs revealed unsuspected genetic etiologies for existing phenotypes, and in the remaining 14 infants, uMDRs provided risk stratification for future medical surveillance. In 13 infants, uMDRs prompted screening for at-risk family members, three of whom underwent cancer-risk-reducing surgeries. Although assessments of clinical utility and cost-effectiveness will require larger datasets, these findings suggest that large-scale comprehensive sequencing of newborns will reveal numerous actionable uMDRs and precipitate substantial, and in some cases lifesaving, downstream medical care in newborns and their family members.


Subject(s)
Genetic Testing , Genome, Human , Humans , Infant, Newborn , Neonatal Screening , Genomics , Exome Sequencing
9.
Genome Med ; 14(1): 114, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207733

ABSTRACT

BACKGROUND: Polygenic risk scores (PRS), which offer information about genomic risk for common diseases, have been proposed for clinical implementation. The ways in which PRS information may influence a patient's health trajectory depend on how both the patient and their primary care provider (PCP) interpret and act on PRS information. We aimed to probe patient and PCP responses to PRS clinical reporting choices METHODS: Qualitative semi-structured interviews of both patients (N=25) and PCPs (N=21) exploring responses to mock PRS clinical reports of two different designs: binary and continuous representations of PRS. RESULTS: Many patients did not understand the numbers representing risk, with high numeracy patients being the exception. However, all the patients still understood a key takeaway that they should ask their PCP about actions to lower their disease risk. PCPs described a diverse range of heuristics they would use to interpret and act on PRS information. Three separate use cases for PRS emerged: to aid in gray-area clinical decision-making, to encourage patients to do what PCPs think patients should be doing anyway (such as exercising regularly), and to identify previously unrecognized high-risk patients. PCPs indicated that receiving "below average risk" information could be both beneficial and potentially harmful, depending on the use case. For "increased risk" patients, PCPs were favorable towards integrating PRS information into their practice, though some would only act in the presence of evidence-based guidelines. PCPs describe the report as more than a way to convey information, viewing it as something to structure the whole interaction with the patient. Both patients and PCPs preferred the continuous over the binary representation of PRS (23/25 and 17/21, respectively). We offer recommendations for the developers of PRS to consider for PRS clinical report design in the light of these patient and PCP viewpoints. CONCLUSIONS: PCPs saw PRS information as a natural extension of their current practice. The most pressing gap for PRS implementation is evidence for clinical utility. Careful clinical report design can help ensure that benefits are realized and harms are minimized.


Subject(s)
Clinical Decision-Making , Primary Health Care , Humans , Risk Factors
10.
J Pers Med ; 12(8)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36013271

ABSTRACT

The Mass General Brigham Biobank (formerly Partners HealthCare Biobank) is a large repository of biospecimens and data linked to extensive electronic health record data and survey data. Its objective is to support and enable translational research focused on genomic, environmental, biomarker and family history associations with disease phenotypes. The Biobank has enrolled more than 135,000 participants, generated genomic data on more than 65,000 of its participants, distributed approximately 153,000 biospecimens, and served close to 450 institutional studies with biospecimens or data. Although the Biobank has been successful, based on some measures of output, this has required substantial institutional investment. In addition, several challenges are ongoing, including: (1) developing a sustainable cost model that doesn't rely as heavily on institutional funding; (2) integrating Biobank operations into clinical workflows; and (3) building a research resource that is diverse and promotes equity in research. Here, we describe the evolution of the Biobank and highlight key lessons learned that may inform other efforts to build biobanking efforts in health system contexts.

11.
Genome Med ; 14(1): 70, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35765100

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) is a worldwide scourge caused by both genetic and environmental risk factors that disproportionately afflicts communities of color. Leveraging existing large-scale genome-wide association studies (GWAS), polygenic risk scores (PRS) have shown promise to complement established clinical risk factors and intervention paradigms, and improve early diagnosis and prevention of T2D. However, to date, T2D PRS have been most widely developed and validated in individuals of European descent. Comprehensive assessment of T2D PRS in non-European populations is critical for equitable deployment of PRS to clinical practice that benefits global populations. METHODS: We integrated T2D GWAS in European, African, and East Asian populations to construct a trans-ancestry T2D PRS using a newly developed Bayesian polygenic modeling method, and assessed the prediction accuracy of the PRS in the multi-ethnic Electronic Medical Records and Genomics (eMERGE) study (11,945 cases; 57,694 controls), four Black cohorts (5137 cases; 9657 controls), and the Taiwan Biobank (4570 cases; 84,996 controls). We additionally evaluated a post hoc ancestry adjustment method that can express the polygenic risk on the same scale across ancestrally diverse individuals and facilitate the clinical implementation of the PRS in prospective cohorts. RESULTS: The trans-ancestry PRS was significantly associated with T2D status across the ancestral groups examined. The top 2% of the PRS distribution can identify individuals with an approximately 2.5-4.5-fold of increase in T2D risk, which corresponds to the increased risk of T2D for first-degree relatives. The post hoc ancestry adjustment method eliminated major distributional differences in the PRS across ancestries without compromising its predictive performance. CONCLUSIONS: By integrating T2D GWAS from multiple populations, we developed and validated a trans-ancestry PRS, and demonstrated its potential as a meaningful index of risk among diverse patients in clinical settings. Our efforts represent the first step towards the implementation of the T2D PRS into routine healthcare.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Bayes Theorem , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Humans , Prospective Studies , Risk Factors
12.
Nat Med ; 28(5): 1006-1013, 2022 05.
Article in English | MEDLINE | ID: mdl-35437332

ABSTRACT

Implementation of polygenic risk scores (PRS) may improve disease prevention and management but poses several challenges: the construction of clinically valid assays, interpretation for individual patients, and the development of clinical workflows and resources to support their use in patient care. For the ongoing Veterans Affairs Genomic Medicine at Veterans Affairs (GenoVA) Study we developed a clinical genotype array-based assay for six published PRS. We used data from 36,423 Mass General Brigham Biobank participants and adjustment for population structure to replicate known PRS-disease associations and published PRS thresholds for a disease odds ratio (OR) of 2 (ranging from 1.75 (95% CI: 1.57-1.95) for type 2 diabetes to 2.38 (95% CI: 2.07-2.73) for breast cancer). After confirming the high performance and robustness of the pipeline for use as a clinical assay for individual patients, we analyzed the first 227 prospective samples from the GenoVA Study and found that the frequency of PRS corresponding to published OR > 2 ranged from 13/227 (5.7%) for colorectal cancer to 23/150 (15.3%) for prostate cancer. In addition to the PRS laboratory report, we developed physician- and patient-oriented informational materials to support decision-making about PRS results. Our work illustrates the generalizable development of a clinical PRS assay for multiple conditions and the technical, reporting and clinical workflow challenges for implementing PRS information in the clinic.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Genetic Predisposition to Disease , Humans , Male , Prospective Studies , Risk Factors , Workflow
13.
J Mol Diagn ; 24(3): 205-218, 2022 03.
Article in English | MEDLINE | ID: mdl-35041930

ABSTRACT

Clinical laboratories offering genome sequencing have the opportunity to return pharmacogenomic findings to patients, providing the added benefit of preemptive testing that could help inform medication selection or dosing throughout the lifespan. Implementation of pharmacogenomic reporting must address several challenges, including inherent limitations in short-read genome sequencing methods, gene and variant selection, standardization of genotype and phenotype nomenclature, and choice of guidelines and drugs to report. An automated pipeline, lmPGX, was developed as an end-to-end solution that produces two versions of a pharmacogenomic report, presenting either Clinical Pharmacogenetics Implementation Consortium or US Food and Drug Administration guidelines for 12 genes. The pipeline was validated for performance using reference samples and pharmacogenetic data from the Genetic Testing Reference Materials Coordination Program. To determine performance and limitations, lmPGX was compared with three additional publicly available pharmacogenomic pipelines. The lmPGX pipeline offers clinical laboratories an opportunity for seamless integration of pharmacogenomic results with genome reporting.


Subject(s)
Pharmacogenetics , Pharmacogenomic Testing , Genetic Testing , Genotype , Humans , Pharmacogenetics/methods , Pharmacogenomic Testing/methods , Phenotype
14.
J Med Genet ; 59(6): 571-578, 2022 06.
Article in English | MEDLINE | ID: mdl-33875564

ABSTRACT

BACKGROUND: This study aimed to identify and resolve discordant variant interpretations across clinical molecular genetic laboratories through the Canadian Open Genetics Repository (COGR), an online collaborative effort for variant sharing and interpretation. METHODS: Laboratories uploaded variant data to the Franklin Genoox platform. Reports were issued to each laboratory, summarising variants where conflicting classifications with another laboratory were noted. Laboratories could then reassess variants to resolve discordances. Discordance was calculated using a five-tier model (pathogenic (P), likely pathogenic (LP), variant of uncertain significance (VUS), likely benign (LB), benign (B)), a three-tier model (LP/P are positive, VUS are inconclusive, LB/B are negative) and a two-tier model (LP/P are clinically actionable, VUS/LB/B are not). We compared the COGR classifications to automated classifications generated by Franklin. RESULTS: Twelve laboratories submitted classifications for 44 510 unique variants. 2419 variants (5.4%) were classified by two or more laboratories. From baseline to after reassessment, the number of discordant variants decreased from 833 (34.4% of variants reported by two or more laboratories) to 723 (29.9%) based on the five-tier model, 403 (16.7%) to 279 (11.5%) based on the three-tier model and 77 (3.2%) to 37 (1.5%) based on the two-tier model. Compared with the COGR classification, the automated Franklin classifications had 94.5% sensitivity and 96.6% specificity for identifying actionable (P or LP) variants. CONCLUSIONS: The COGR provides a standardised mechanism for laboratories to identify discordant variant interpretations and reduce discordance in genetic test result delivery. Such quality assurance programmes are important as genetic testing is implemented more widely in clinical care.


Subject(s)
Genetic Variation , Laboratories , Canada , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Information Dissemination/methods
15.
Genet Med ; 24(2): 454-462, 2022 02.
Article in English | MEDLINE | ID: mdl-34906510

ABSTRACT

PURPOSE: The clinical genomics knowledgebase is dynamic with variant classifications changing as newly identified cases, additional population data, and other evidence become available. This is a challenge for the clinical laboratory because of limited resource availability for variant reassessment. METHODS: Throughout the Electronic Medical Records and Genomics phase III program, clinical sites associated with the Mass General Brigham/Broad sequencing center received automated, real-time notifications when reported variants were reclassified. In this study, we summarized the nature of these reclassifications and described the proactive reassessment framework we used for the Electronic Medical Records and Genomics program data set to identify variants most likely to undergo reclassification. RESULTS: Reanalysis of 1855 variants led to the reclassification of 2% (n = 45) of variants, affecting 0.6% (n = 67) of participants. Of these reclassifications, 78% (n = 35) were high-impact changes affecting reportability, with 8 variants downgraded from likely pathogenic/pathogenic to variants of uncertain significance (VUS) and 27 variants upgraded from VUS to likely pathogenic/pathogenic. Most upgraded variants (67%) were initially classified as VUS-Favor Pathogenic, highlighting the benefit of VUS subcategorization. The most common reason for reclassification was new published case data and/or functional evidence. CONCLUSION: Our results highlight the importance of periodic sequence variant reevaluation and the need for automated approaches to advance routine implementation of variant reevaluations in clinical practice.


Subject(s)
Genetic Testing , Genetic Variation , Genetic Predisposition to Disease , Genetic Testing/methods , Genetic Variation/genetics , Genomics , Humans
16.
Am J Hum Genet ; 108(12): 2224-2237, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34752750

ABSTRACT

Over 100 million research participants around the world have had research array-based genotyping (GT) or genome sequencing (GS), but only a small fraction of these have been offered return of actionable genomic findings (gRoR). Between 2017 and 2021, we analyzed genomic results from 36,417 participants in the Mass General Brigham Biobank and offered to confirm and return pathogenic and likely pathogenic variants (PLPVs) in 59 genes. Variant verification prior to participant recontact revealed that GT falsely identified PLPVs in 44.9% of samples, and GT failed to identify 72.0% of PLPVs detected in a subset of samples that were also sequenced. GT and GS detected verified PLPVs in 1% and 2.5% of the cohort, respectively. Of 256 participants who were alerted that they carried actionable PLPVs, 37.5% actively or passively declined further disclosure. 76.3% of those carrying PLPVs were unaware that they were carrying the variant, and over half of those met published professional criteria for genetic testing but had never been tested. This gRoR protocol cost approximately $129,000 USD per year in laboratory testing and research staff support, representing $14 per participant whose DNA was analyzed or $3,224 per participant in whom a PLPV was confirmed and disclosed. These data provide logistical details around gRoR that could help other investigators planning to return genomic results.


Subject(s)
Biological Specimen Banks , Disease/genetics , Genetic Variation , Genome, Human , Genomics , Adult , Cohort Studies , DNA , Disclosure , Duty to Recontact , Female , Genetic Research , Genetic Testing , Genomics/economics , Genomics/standards , Genomics/trends , Humans , Informed Consent , Male , Middle Aged , Reproducibility of Results
18.
Genet Med ; 23(9): 1689-1696, 2021 09.
Article in English | MEDLINE | ID: mdl-33976420

ABSTRACT

PURPOSE: To evaluate the diagnostic yield and clinical relevance of clinical genome sequencing (cGS) as a first genetic test for patients with suspected monogenic disorders. METHODS: We conducted a prospective randomized study with pediatric and adult patients recruited from genetics clinics at Massachusetts General Hospital who were undergoing planned genetic testing. Participants were randomized into two groups: standard-of-care genetic testing (SOC) only or SOC and cGS. RESULTS: Two hundred four participants were enrolled, 202 were randomized to one of the intervention arms, and 99 received cGS. In total, cGS returned 16 molecular diagnoses that fully or partially explained the indication for testing in 16 individuals (16.2% of the cohort, 95% confidence interval [CI] 8.9-23.4%), which was not significantly different from SOC (18.2%, 95% CI 10.6-25.8%, P = 0.71). An additional eight molecular diagnoses reported by cGS had uncertain relevance to the participant's phenotype. Nevertheless, referring providers considered 20/24 total cGS molecular diagnoses (83%) to be explanatory for clinical features or worthy of additional workup. CONCLUSION: cGS is technically suitable as a first genetic test. In our cohort, diagnostic yield was not significantly different from SOC. Further studies addressing other variant types and implementation challenges are needed to support feasibility and utility of broad-scale cGS adoption.


Subject(s)
Genetic Testing , Pathology, Molecular , Adult , Child , Chromosome Mapping , Humans , Molecular Diagnostic Techniques , Prospective Studies
19.
Genet Med ; 23(7): 1372-1375, 2021 07.
Article in English | MEDLINE | ID: mdl-33772220

ABSTRACT

PURPOSE: Newborn screening (NBS) is performed to identify neonates at risk for actionable, severe, early-onset disorders, many of which are genetic. The BabySeq Project randomized neonates to receive conventional NBS or NBS plus exome sequencing (ES) capable of detecting sequence variants that may also diagnose monogenic disease or indicate genetic disease risk. We therefore evaluated how ES and conventional NBS results differ in this population. METHODS: We compared results of NBS (including hearing screens) and ES for 159 infants in the BabySeq Project. Infants were considered "NBS positive" if any abnormal result was found indicating disease risk and "ES positive" if ES identified a monogenic disease risk or a genetic diagnosis. RESULTS: Most infants (132/159, 84%) were NBS and ES negative. Only one infant was positive for the same disorder by both modalities. Nine infants were NBS positive/ES negative, though seven of these were subsequently determined to be false positives. Fifteen infants were ES positive/NBS negative, all of which represented risk of genetic conditions that are not included in NBS programs. No genetic explanation was identified for eight infants referred on the hearing screen. CONCLUSION: These differences highlight the complementarity of information that may be gleaned from NBS and ES in the newborn period.


Subject(s)
Genomics , Neonatal Screening , Chromosome Mapping , Humans , Infant , Infant, Newborn , Risk Factors , Exome Sequencing
20.
Hum Mutat ; 41(9): 1577-1587, 2020 09.
Article in English | MEDLINE | ID: mdl-32516855

ABSTRACT

The ACMG/AMP variant classification framework was intended for highly penetrant Mendelian conditions. While it is appreciated that clinically relevant variants exhibit a wide spectrum of penetrance, accurately assessing and expressing the pathogenicity of variants with lower penetrance can be challenging. The vinculin (VCL) gene illustrates these challenges. Model organism data provide evidence that loss of function of VCL may play a role in cardiomyopathy and aggregate case-control studies suggest low penetrance. VCL loss of function variants, however, are rarely identified in affected probands and therefore there is a paucity of family studies clarifying the clinical significance of individual variants. This study, which aggregated data from >18,000 individuals who underwent gene panel or exome testing for inherited cardiomyopathies, identified 32 probands with VCL loss-of-function variants and confirmed enrichment in probands with dilated cardiomyopathy (odds ratio [OR] = 9.01; confidence interval [CI] = 4.93-16.45). Our data revealed that the majority of these individuals (89.5%) had pediatric onset of disease. Family studies demonstrated that heterozygous loss of function of VCL alone is insufficient to cause cardiomyopathy but that these variants do contribute to disease risk. In conclusion, VCL loss-of-function variants should be reported in a diagnostic setting but need to be clearly distinguished as having lower penetrance.


Subject(s)
Cardiomyopathies/genetics , Genetic Predisposition to Disease , Loss of Function Mutation , Vinculin/genetics , Adolescent , Adult , Cardiomyopathy, Dilated/genetics , Child , Child, Preschool , Exome , Female , Humans , Infant , Male , Middle Aged , Pedigree , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...