Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Ann Bot ; 126(4): 647-660, 2020 09 14.
Article in English | MEDLINE | ID: mdl-31837221

ABSTRACT

BACKGROUND AND AIMS: Scaling from single-leaf to whole-canopy photosynthesis faces several complexities related to variations in light interception and leaf properties. To evaluate the impact of canopy strucuture on gas exchange, we developed a functional-structural plant model to upscale leaf processes to the whole canopy based on leaf N content. The model integrates different models that calculate intercepted radiation, leaf traits and gas exchange for each leaf in the canopy. Our main objectives were (1) to introduce the gas exchange model developed at the plant level by integrating the leaf-level responses related to canopy structure, (2) to test the model against an independent canopy gas exchange dataset recorded on different plant architectures, and (3) to quantify the impact of intra-canopy N distribution on crop photosynthesis. METHODS: The model combined a 3D reconstruction of grapevine (Vitis vinifera) canopy architecture, a light interception model, and a coupled photosynthesis and stomatal conductance model that considers light-driven variations in N distribution. A portable chamber device was constructed to measure whole-plant gas exchange to validate the model outputs with data collected on different training systems. Finally, a sensitivity analysis was performed to evaluate the impact on C assimilation of different N content distributions within the canopy. KEY RESULTS: By considering a non-uniform leaf N distribution within the canopy, our model accurately reproduced the daily pattern of gas exchange of different canopy architectures. The gain in photosynthesis permitted by the non-uniform compared with a theoretical uniform N distribution was about 18 %, thereby contributing to the maximization of C assimilation. By contrast, considering a maximal N content for all leaves in the canopy overestimated net CO2 exchange by 28 % when compared with the non-uniform distribution. CONCLUSIONS: The model reproduced the gas exchange of plants under different training systems with a low error (10 %). It appears to be a reliable tool to evaluate the impact of a grapevine training system on water use efficiency at the plant level.


Subject(s)
Vitis , Photosynthesis , Plant Leaves , Water
2.
Plant Physiol ; 175(3): 1121-1134, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28899961

ABSTRACT

Plants evolved different strategies to cope with water stress. While isohydric species maintain their midday leaf water potential (ΨM) under soil water deficit by closing their stomata, anisohydric species maintain higher stomatal aperture and exhibit substantial reductions in ΨM It was hypothesized that isohydry is related to a locally higher sensitivity of stomata to the drought-hormone abscisic acid (ABA). Interestingly, recent lines of evidence in Arabidopsis (Arabidopsis thaliana) suggested that stomatal responsiveness is also controlled by an ABA action on leaf water supply upstream from stomata. Here, we tested the possibility in grapevine (Vitis vinifera) that different genotypes ranging from near isohydric to more anisohydric may have different sensitivities in these ABA responses. Measurements on whole plants in drought conditions were combined with assays on detached leaves fed with ABA. Two different methods consistently showed that leaf hydraulic conductance (Kleaf) was down-regulated by exogenous ABA, with strong variations depending on the genotype. Importantly, variation between isohydry and anisohydry correlated with Kleaf sensitivity to ABA, with Kleaf in the most anisohydric genotypes being unresponsive to the hormone. We propose that the observed response of Kleaf to ABA may be part of the overall ABA regulation of leaf water status.


Subject(s)
Abscisic Acid/pharmacology , Down-Regulation/drug effects , Plant Leaves/physiology , Vitis/genetics , Vitis/physiology , Water/physiology , Genetic Variation , Genotype , Models, Biological , Plant Exudates/metabolism , Plant Leaves/drug effects , Vitis/drug effects
3.
Proc Natl Acad Sci U S A ; 113(32): 8963-8, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27457942

ABSTRACT

Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE.


Subject(s)
Breeding , Plant Transpiration , Vitis/physiology , Water/metabolism , Crops, Agricultural , Quantitative Trait Loci , Vitis/genetics
4.
AoB Plants ; 72015 Oct 03.
Article in English | MEDLINE | ID: mdl-26433705

ABSTRACT

Modelling the spatial and temporal distribution of leaf nitrogen (N) is central to specify photosynthetic parameters and simulate canopy photosynthesis. Leaf photosynthetic parameters depend on both local light availability and whole-plant N status. The interaction between these two levels of integration has generally been modelled by assuming optimal canopy functioning, which is not supported by experiments. During this study, we examined how a set of empirical relationships with measurable parameters could be used instead to predict photosynthesis at the leaf and whole-canopy levels. The distribution of leaf N per unit area (Na) within the canopy was related to leaf light irradiance and to the nitrogen nutrition index (NNI), a whole-plant variable accounting for plant N status. Na was then used to determine the photosynthetic parameters of a leaf gas exchange model. The model was assessed on alfalfa canopies under contrasting N nutrition and with N2-fixing and non-fixing plants. Three experiments were carried out to parameterize the relationships between Na, leaf irradiance, NNI and photosynthetic parameters. An additional independent data set was used for model evaluation. The N distribution model showed that it was able to predict leaf N on the set of leaves tested. The Na at the top of the canopy appeared to be related linearly to the NNI, whereas the coefficient accounting for N allocation remained constant. Photosynthetic parameters were related linearly to Na irrespective of N nutrition and the N acquisition mode. Daily patterns of gas exchange were simulated accurately at the leaf scale. When integrated at the whole-canopy scale, the model predicted that raising N availability above an NNI of 1 did not result in increased net photosynthesis. Overall, the model proposed offered a solution for a dynamic coupling of leaf photosynthesis and canopy N distribution without requiring any optimal functioning hypothesis.

5.
J Exp Bot ; 65(21): 6205-18, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25381432

ABSTRACT

In the face of water stress, plants evolved with different abilities to limit the decrease in leaf water potential, notably in the daytime (ΨM). So-called isohydric species efficiently maintain high ΨM, whereas anisohydric species cannot prevent ΨM from dropping as soil water deficit develops. The genetic and physiological origins of these differences in (an)isohydric behaviours remain to be clarified. This is of particular interest within species such as Vitis vinifera L. where continuous variation in the level of isohydry has been observed among cultivars. With this objective, a 2 year experiment was conducted on the pseudo-F1 progeny from a cross between the two widespread cultivars Syrah and Grenache using a phenotyping platform coupled to a controlled-environment chamber. Potted plants of all the progeny were analysed for ΨM, transpiration rate, and soil-to-leaf hydraulic conductance, under both well-watered and water deficit conditions. A high genetic variability was found for all the above traits. Four quantitative trait loci (QTLs) were detected for ΨM under water deficit conditions, and 28 other QTLs were detected for the different traits in either condition. Genetic variation in ΨM maintenance under water deficit weakly correlated with drought-induced reduction in transpiration rate in the progeny, and QTLs for both traits did not completely co-localize. This indicates that genetic variation in the control of ΨM under water deficit was not due simply to variation in transpiration sensitivity to soil drying. Possible origins of the diversity in (an)isohydric behaviours in grapevine are discussed on the basis of concurrent variations in soil-to-leaf hydraulic conductance and stomatal control of transpiration.


Subject(s)
Plant Leaves/physiology , Plant Transpiration , Quantitative Trait Loci , Vitis/genetics , Water/physiology , Droughts , Genetic Variation
6.
Plant Cell Environ ; 35(7): 1313-28, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22329397

ABSTRACT

Understanding the distribution of gas exchange within a plant is a prerequisite for scaling up from leaves to canopies. We evaluated whether leaf traits were reliable predictors of the effects of leaf ageing and leaf irradiance on leaf photosynthetic capacity (V(cmax) , J(max) ) in field-grown vines (Vitis vinifera L). Simultaneously, we measured gas exchange, leaf mass per area (LMA) and nitrogen content (N(m) ) of leaves at different positions within the canopy and at different phenological stages. Daily mean leaf irradiance cumulated over 10 d (PPFD(10) ) was obtained by 3D modelling of the canopy structure. N(m) decreased over the season in parallel to leaf ageing while LMA was mainly affected by leaf position. PPFD(10) explained 66, 28 and 73% of the variation of LMA, N(m) and nitrogen content per area (N(a) ), respectively. Nitrogen content per unit area (N(a) = LMA × N(m) ) was the best predictor of the intra-canopy variability of leaf photosynthetic capacity. Finally, we developed a classical photosynthesis-stomatal conductance submodel and by introducing N(a) as an input, the model accurately simulated the daily pattern of gas exchange for leaves at different positions in the canopy and at different phenological stages during the season.


Subject(s)
Acclimatization , Models, Biological , Nitrogen/analysis , Plant Leaves/radiation effects , Vitis/radiation effects , Photosynthesis , Plant Stomata/radiation effects , Plant Transpiration
7.
New Phytol ; 194(2): 416-429, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22335501

ABSTRACT

The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures.


Subject(s)
Acclimatization/genetics , Genes, Plant/genetics , Plant Roots/genetics , Plant Transpiration/genetics , Vitis/genetics , Vitis/physiology , Water/physiology , Environment , Phenotype , Plant Roots/physiology , Plant Transpiration/physiology , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable
8.
Physiol Plant ; 134(1): 49-63, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18399930

ABSTRACT

The effect of trophic competition between vegetative sources and reproductive sinks on grapevine (Vitis vinifera L.) shoot development was analyzed. Two international cultivars (Grenache N and Syrah) grown in pots, which were well watered, were studied. A large range of trophic competition levels was obtained by modifying the cluster loads per plant. An analytical breakdown of the branching system was used to analyze the effects of trophic competition. Phytomer production on the primary axis and the probability and timing of axillary budburst were not affected by trophic competition. However, the duration of development and leaf production rate for secondary axes were both significantly affected. The impact of trophic competition differed within the P0-P1-P2 architectural module, locally within the shoot and between cultivars. Trophic competition reduced the organogenesis of secondary axes most strongly close to clusters, on P1-P2 phytomers and in Grenache N. Based on these results, a modeling approach simulating sink strength variation and the local effects of sink proximity would be more relevant than a model considering only development as a function of thermal time or the global distribution of available biomass.


Subject(s)
Plant Shoots/growth & development , Vitis/growth & development , Models, Biological , Plant Shoots/anatomy & histology , Vitis/anatomy & histology
9.
Ann Bot ; 101(8): 1167-84, 2008 May.
Article in English | MEDLINE | ID: mdl-18202006

ABSTRACT

BACKGROUND AND AIMS: In grapevine, canopy-structure-related variations in light interception and distribution affect productivity, yield and the quality of the harvested product. A simple statistical model for reconstructing three-dimensional (3D) canopy structures for various cultivar-training system (C x T) pairs has been implemented with special attention paid to balance the time required for model parameterization and accuracy of the representations from organ to stand scales. Such an approach particularly aims at overcoming the weak integration of interplant variability using the usual direct 3D measurement methods. MODEL: This model is original in combining a turbid-medium-like envelope enclosing the volume occupied by vine shoots with the use of discrete geometric polygons representing leaves randomly located within this volume to represent plant structure. Reconstruction rules were adapted to capture the main determinants of grapevine shoot architecture and their variability. Using a simplified set of parameters, it was possible to describe (1) the 3D path of the main shoot, (2) the volume occupied by the foliage around this path and (3) the orientation of individual leaf surfaces. Model parameterization (estimation of the probability distribution for each parameter) was carried out for eight contrasting C x T pairs. KEY RESULTS AND CONCLUSIONS: The parameter values obtained in each situation were consistent with our knowledge of grapevine architecture. Quantitative assessments for the generated virtual scenes were carried out at the canopy and plant scales. Light interception efficiency and local variations of light transmittance within and between experimental plots were correctly simulated for all canopies studied. The approach predicted these key ecophysiological variables significantly more accurately than the classical complete digitization method with a limited number of plants. In addition, this model accurately reproduced the characteristics of a wide range of individual digitized plants. Simulated leaf area density and the distribution of light interception among leaves were consistent with measurements. However, at the level of individual organs, the model tended to underestimate light interception.


Subject(s)
Models, Theoretical , Plant Shoots/growth & development , Vitis/growth & development , Computer Simulation , Imaging, Three-Dimensional/methods , Plant Shoots/anatomy & histology , Vitis/anatomy & histology
10.
Ann Bot ; 99(3): 425-37, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17204533

ABSTRACT

BACKGROUND AND AIMS: Plant architecture and its interaction with agronomic practices and environmental constraints are determinants of the structure of the canopy, which is involved in carbon acquisition and fruit quality development. A framework for the quantitative analysis of grapevine (Vitis vinifera) shoot architecture, based on a set of topological and geometrical parameters, was developed for the identification of differences between cultivars and the origins of phenotypic variability. METHODS: Two commercial cultivars ('Grenache N', 'Syrah') with different shoot architectures were grown in pots, in well-irrigated conditions. Shoot topology was analysed, using a hidden semi-Markov chain and variable-order Markov chains to identify deviations from the normal pattern of succession of phytomer types (P0-P1-P2), together with kinematic analysis of shoot axis development. Shoot geometry was characterized by final internode and individual leaf area measurements. KEY RESULTS: Shoot architecture differed significantly between cultivars. Secondary leaf area and axis length were greater for 'Syrah'. Secondary leaf area distribution along the main axis also differed between cultivars, with secondary leaves preferentially located towards the basal part of the shoot in 'Syrah'. The main factors leading to differences in leaf area between the cultivars were: (a) slight differences in main shoot structure, with the supplementary P0 phytomer on the lower part of the shoot in 'Grenache N', which bears a short branch; and (b) an higher rate and duration of development of branches bearing by P1-P2 phytomers related to P0 ones at the bottom of the shoot in 'Syrah'. Differences in axis length were accounted for principally by differences in individual internode morphology, with 'Syrah' having significantly longer internodes. This trait, together with a smaller shoot diameter, may account for the characteristic 'droopy' habit of 'Syrah' shoots. CONCLUSIONS: This study highlights the architectural parameters involved in the phenotypic variability of shoot architecture in two grapevine cultivars. Differences in primary shoot structure and in branch development potential accounted for the main differences in leaf area distribution between the two cultivars. By contrast, shoot shape seemed to be controlled by differences in axis length due principally to differences in internode length.


Subject(s)
Vitis/anatomy & histology , Kinetics , Markov Chains , Phenotype , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Shoots/anatomy & histology , Plant Shoots/growth & development , Vitis/classification , Vitis/growth & development
11.
Ann Bot ; 98(1): 175-85, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16679414

ABSTRACT

BACKGROUND AND AIMS: Soil water deficit is a major abiotic stress with severe consequences for the development, productivity and quality of crops. However, it is considered a positive factor in grapevine management (Vitis vinifera), as it has been shown to increase grape quality. The effects of soil water deficit on organogenesis, morphogenesis and gas exchange in the shoot were investigated. METHODS: Shoot organogenesis was analysed by distinguishing between the various steps in the development of the main axis and branches. Several experiments were carried out in pots, placed in a greenhouse or outside, in southern France. Soil water deficits of various intensities were imposed during vegetative development of the shoots of two cultivars ('Syrah' and 'Grenache N'). KEY RESULTS: All developmental processes were inhibited by soil water deficit, in an intensity-dependent manner, and sensitivity to water stress was process-dependent. Quantitative relationships with soil water were established for all processes. No difference was observed between the two cultivars for any criterion. The number of leaves on branches was particularly sensitive to soil water deficit, which rapidly and strongly reduced the rate of leaf appearance on developing branches. This response was not related to carbon availability, photosynthetic activity or the soluble sugar content of young expanding leaves. The potential number of branches was not a limiting factor for shoot development. CONCLUSIONS: The particularly high sensitivity to soil water deficit of leaf appearance on branches indicates that this process is a major determinant of the adaptation of plant leaf area to soil water deficit. The origin of this particular developmental response to soil water deficit is unclear, but it seems to be related to constitutive characteristics of branches rather than to competition for assimilates between axes differing in sink strength.


Subject(s)
Morphogenesis/physiology , Soil , Vitis/growth & development , Carbohydrate Metabolism , Carbon Dioxide/metabolism , Oxygen/metabolism , Photosynthesis , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Shoots/anatomy & histology , Plant Shoots/growth & development , Plant Shoots/metabolism , Vitis/anatomy & histology , Vitis/metabolism , Water/metabolism
12.
Ann Bot ; 93(3): 263-74, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14749253

ABSTRACT

BACKGROUND AND AIMS: Shoot architecture variability in grapevine (Vitis vinifera) was analysed using a generic modelling approach based on thermal time developed for annual herbaceous species. The analysis of shoot architecture was based on various levels of shoot organization, including pre-existing and newly formed parts of the stem, and on the modular structure of the stem, which consists of a repeated succession of three phytomers (P0-P1-P2). METHODS: Four experiments were carried out using the cultivar 'Grenache N': two on potted vines (one of which was carried out in a glasshouse) and two on mature vines in a vineyard. These experiments resulted in a broad diversity of environmental conditions, but none of the plants experienced soil water deficit. KEY RESULTS: Development of the main axis was highly dependent on air temperature, being linearly related to thermal time for all stages of leaf development from budbreak to veraison. The stable progression of developmental stages along the main stem resulted in a thermal-time based programme of leaf development. Leaf expansion rate varied with trophic competition (shoot and cluster loads) and environmental conditions (solar radiation, VPD), accounting for differences in final leaf area. Branching pattern was highly variable. Classification of the branches according to ternary modular structure increased the accuracy of the quantitative analysis of branch development. The rate and duration of leaf production were higher for branches derived from P0 phytomers than for branches derived from P1 or P2 phytomers. Rates of leaf production, expressed as a -function of thermal time, were not stable and depended on trophic competition and environmental conditions such as solar radiation or VPD. CONCLUSIONS: The application to grapevine of a generic model developed in annual plants made it possible to identify constants in main stem development and to determine the hierarchical structure of branches with respect to the modular structure of the stem in response to intra- and inter-shoot trophic competition.


Subject(s)
Plant Leaves/growth & development , Plant Shoots/growth & development , Plant Stems/growth & development , Vitis/growth & development , Models, Statistical , Sunlight , Temperature , Water/metabolism
13.
Funct Plant Biol ; 30(6): 699-710, 2003 Jul.
Article in English | MEDLINE | ID: mdl-32689054

ABSTRACT

A geometrical canopy model describing radiation absorption (Riou et al. 1989, Agronomie 9, 441-450) and partitioning between grapevines (Vitis vinifera L.) and soil was coupled to a soil water balance routine describing a bilinear change in relative transpiration rate as a function of the fraction of soil transpirable water (FTSW). The model was amended to account for changes in soil evaporation after precipitation events and subsequent dry-down of the top soil layer. It was tested on two experimental vineyards in the Alsace region, France, varying in soil type, water-holding capacity and rooting depth. Simulations were run over four seasons (1992-1993, 1995-1996) and compared with measurements of FTSW conducted with a neutron probe. For three out of four years, the model simulated the dynamics in seasonal soil water balance adequately. For the 1996 season soil water content was overestimated for one vineyard and underestimated for the other. Sensitivity analyses revealed that the model responded strongly to changes in canopy parameters, and that soil evaporation was particularly sensitive to water storage of the top soil layer after rainfall. We found a close relationship between field-average soil water storage and pre-dawn water potential, a relationship which could be used to couple physiological models of growth and / or photosynthesis to the soil water dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...