Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Ultrason Sonochem ; 54: 171-182, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30755390

ABSTRACT

Acoustic streaming and its attendant effects in the sump of a direct-chill (DC) casting process are successfully predicted under ultrasonic treatment for the first time. The proposed numerical model couples acoustic cavitation, fluid flow, heat and species transfer, and solidification to predict the flow pattern, acoustic pressure, and temperature fields in the sump. The model is numerically stable with time steps of the order of 0.01 s and therefore computationally attractive for optimization studies necessitating simulation times of the order of a minute. The sump profile is altered by acoustic streaming, with the slurry region depressed along the centreline of the billet by a strong central jet. The temperature gradient in the transition zone is increased, potentially interfering with grain refinement. The cooling rate in the sump is also altered, thereby modifying the dendrite arm spacing of the as-cast billet. The relative position of the sonotrode affects the sump profile, with the sump depth decreased by around 5 mm when the sonotrode is moved above the graphite ring level by 100 mm. The acoustic streaming jet penetrates into the slurry zone and, as a result, the growth direction of dendritic grains in the off-centre position is altered.

2.
Ultrason Sonochem ; 55: 243-255, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30733147

ABSTRACT

The acoustic streaming behaviour below an ultrasonic sonotrode in water was predicted by numerical simulation and validated by experimental studies. The flow was calculated by solving the transient Reynolds-Averaged Navier-Stokes equations with a source term representing ultrasonic excitation implemented from the predictions of a nonlinear acoustic model. Comparisons with the measured flow field from Particle Image Velocimetry (PIV) water experiments revealed good agreement in both velocity magnitude and direction at two power settings, supporting the validity of the model for acoustic streaming in the presence of cavitating bubbles. Turbulent features measured by PIV were also recovered by the model. The model was then applied to the technologically important area of ultrasonic treatment of liquid aluminium, to achieve the prediction of acoustic streaming for the very first time that accounts for nonlinear pressure propagation in the presence of acoustic cavitation in the melt. Simulations show a strong dependence of the acoustic streaming flow direction on the cavitating bubble volume fraction, reflecting PIV observations. This has implications for the technological use of ultrasound in liquid metal processing.

3.
Ultrason Sonochem ; 52: 455-467, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30594518

ABSTRACT

Ultrasonic (cavitation) melt processing attracts considerable interest from both academic and industrial communities as a promising route to provide clean, environment friendly and energy efficient solutions for some of the core issues of the metal casting industry, such as improving melt quality and providing structure refinement. In the last 5 years, the authors undertook an extensive research programme into fundamental mechanisms of cavitation melt processing using state-of-the-art and unique facilities and methodologies. This overview summarises the recent results on the evaluation of acoustic pressure and melt flows in the treated melt, direct observations and quantitative analysis of cavitation in liquid aluminium alloys, in-situ and ex-situ studies of the nucleation, growth and fragmentation of intermetallics, and de-agglomeration of particles. These results provide valuable new insights and knowledge that are essential for upscaling ultrasonic melt processing to industrial level.

4.
Ultrason Sonochem ; 42: 411-421, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29429686

ABSTRACT

In an attempt to quantify the instantaneous pressure field in cavitating liquids at large forcing signals, pressures were measured in four different liquids contained in vessels with a frequency mode in resonance with the forcing signal. The pressure field in liquid metal was quantified for the first time, with maximum pressures of the order of 10-15 MPa measured in liquid aluminium. These high pressures are presumed to be responsible for deagglomeration and fragmentation of dendritic intermetallics and other inclusions. Numerical modelling showed that acoustic shielding attenuates pressure far from the sonotrode and it is prominent in the transparent liquids studied but less so in aluminium, suggesting that aluminium behaviour is different. Due to acoustic shielding, the numerical model presented cannot adequately capture the pressure field away from the intense cavitation zone, but gives a good qualitative description of the cavitation activity. The results obtained contribute to understanding the process of ultrasonic melt treatment (UST) of metal alloys, while facilitating further the guidelines formulation and reproducible protocols for controlling UST at industrial levels.

5.
Ultrason Sonochem ; 37: 660-668, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28427680

ABSTRACT

To address difficulties in treating large volumes of liquid metal with ultrasound, a fundamental study of acoustic cavitation in liquid aluminium, expressed in an experimentally validated numerical model, is presented in this paper. To improve the understanding of the cavitation process, a non-linear acoustic model is validated against reference water pressure measurements from acoustic waves produced by an immersed horn. A high-order method is used to discretize the wave equation in both space and time. These discretized equations are coupled to the Rayleigh-Plesset equation using two different time scales to couple the bubble and flow scales, resulting in a stable, fast, and reasonably accurate method for the prediction of acoustic pressures in cavitating liquids. This method is then applied to the context of treatment of liquid aluminium, where it predicts that the most intense cavitation activity is localised below the vibrating horn and estimates the acoustic decay below the sonotrode with reasonable qualitative agreement with experimental data.

6.
Ultrason Sonochem ; 34: 651-662, 2017 01.
Article in English | MEDLINE | ID: mdl-27773292

ABSTRACT

A bespoke cavitometer that measures acoustic spectrum and is capable of operating in a range of temperatures (up to 750°C) was used to study the cavitation behaviour in three transparent liquids and in molten aluminium. To relate these acoustic measurements to cavitation development, the dynamics of the cavitation bubble structures was observed in three Newtonian, optically transparent liquids with significantly different physical properties: water, ethanol, and glycerine. Each liquid was treated at 20kHz with a piezoelectric ultrasonic transducer coupled to a titanium sonotrode with a tip diameter of 40mm. Two different transducer power levels were deployed: 50% and 100%, with the maximum power corresponding to a peak-to-peak amplitude of 17µm. The cavitation structures and the flow patterns were filmed with a digital camera. To investigate the effect of distance from the ultrasound source on the cavitation intensity, acoustic emissions were measured with the cavitometer at two points: below the sonotrode and near the edge of the experimental vessel. The behaviour of the three tested liquids was very different, implying that their physical parameters played a decisive role in the establishment of the cavitation regime. Non dimensional analysis revealed that water shares the closest cavitation behaviour with liquid aluminium and can therefore be used as its physical analogue in cavitation studies; this similarity was also confirmed when comparing the measured acoustic spectra of water and liquid aluminium.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(3 Pt 1): 031128, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21230046

ABSTRACT

Some years ago, Prigogine minimum entropy production principle was generalized by Lebon and Dauby to account for the nonlocal heat transport equation derived by Guyer and Krumhansl. Here, this criterion is extended to incorporate the effects of heat slip flow along the walls. This formulation is shown to be useful for the description of steady heat flow in nanosystems, where the heat slip flow plays a decisive role.

8.
J Exp Bot ; 59(10): 2565-78, 2008.
Article in English | MEDLINE | ID: mdl-18508810

ABSTRACT

Sugars play an important role in grapevine flowering. This complex process from inflorescence initiation to fruit maturity takes two growing seasons. Currently, most of the available data concern the involvement of sugars as energy sources during the formation of reproductive structures from initiation of inflorescences during the summer of the first year, until flower opening during the following spring. Sugars devoted to the development of reproductive structures are supplied either by wood reserves or by photosynthesis in leaves or inflorescences, depending on the stage of development. Female meiosis appears to be a key point in the success of flower formation because (i) flowers are vulnerable at this stage and (ii) it corresponds in the whole plant to the transition between reserve mobilization from perennial organs (roots, trunk, and canes) towards efficient leaf photosynthesis. The perturbation of reserve replenishment during the previous year provokes perturbation in the development of inflorescences, whereas altering the photosynthetic sources affects the formation of flowers during the same year. In particular, a lack of sugar availability in flowers at female meiosis caused by various environmental or physiological fluctuations may lead to drastic flower abortion. Apart from energy, sugars also play roles as regulators of gene expression and as signal molecules that may be involved in stress responses. In the future, these two topics should be further investigated in the grapevine considering the sensitivity of flowers to environmental stresses at meiosis.


Subject(s)
Carbohydrate Metabolism , Flowers/physiology , Photosynthesis , Vitis/physiology , Cell Division , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Seasons , Vitis/genetics , Vitis/growth & development
9.
Ann Bot ; 95(6): 943-8, 2005 May.
Article in English | MEDLINE | ID: mdl-15749750

ABSTRACT

BACKGROUND AND AIMS: A reliable protocol for flowering and fruiting in cuttings was developed with the aim of (a) studying inflorescence and flower development in grapevine cuttings and field plants, and (b) assisting haploid plant production. METHODS: Inflorescence and flower development was studied in 'Gewurztraminer' (GW) and 'Pinot Noir' (PN) grape vines and cuttings grown in a glasshouse, along with variations in starch in the flowers. As there is a strong relationship between flower development and starch, the starch content of reproductive structures was estimated. KEY RESULTS: Inflorescence and flower development were similar in the vines and cuttings with consistent differences between the two cultivars. Indeed, the ontogenesis of male and female organs is not synchronous in GW and PN, with both female and male meiosis occurring earlier in PN than in GW. Moreover, changes of starch reserves were similar in the two plant types. CONCLUSIONS: Cuttings have a similar reproductive physiology to vines, and can be used to study grape physiology and to develop haploid plants.


Subject(s)
Flowers/physiology , Starch/metabolism , Vitis/growth & development , Botany/methods , Flowers/cytology , Flowers/growth & development , Reproduction , Seeds/physiology
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(4 Pt 1): 041601, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14682947

ABSTRACT

We study Bénard-Marangoni instability in a system formed by a horizontal liquid layer and its overlying vapor. The liquid is lying on a hot rigid plate and the vapor is bounded by a cold parallel plate. A pump maintains a reduced pressure in the vapor layer and evacuates the vapor. This investigation is undertaken within the classical quasisteady approximation for both the vapor and the liquid phases. The two layers are separated by a deformable interface. Temporarily frozen temperature and velocity distributions are employed at each instant for the stability analysis, limited to infinitesimal disturbances (linear regime). We use irreversible thermodynamics to model the phase change under interfacial nonequilibrium. Within this description, the interface appears as a barrier for transport of both heat and mass. Hence, in contrast with previous studies, we consider the possibility of a temperature jump across the interface, as recently measured experimentally. The stability analysis shows that the interfacial resistances to heat and mass transfer have a destabilizing influence compared to an interface that is in thermodynamic equilibrium. The role of the fluctuations in the vapor phase on the onset of instability is discussed. The conditions to reduce the system to a one phase model are also established. Finally, the influence of the evaporation parameters and of the presence of an inert gas on the marginal stability curves is discussed.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(4 Pt 1): 041607, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14682953

ABSTRACT

This work is devoted to the theoretical study of the stability of two superposed horizontal liquid layers bounded by two solid planes and subjected to a horizontal temperature gradient. The liquids are supposed to be immiscible with a nondeformable interface. The forces acting on the system are buoyancy and interfacial tension. Four different flow patterns and temperature profiles are found for the basic state. A linear perturbative analysis with respect to two- and three-dimensional perturbations reveals the existence of three kinds of patterns. Depending on the relative height of both liquids several situations are predicted: either wave propagation from cold to the hot regions, or waves propagating in the opposite direction or still stationary longitudinal rolls. The behavior of three different pairs of liquids which have been used in experiments on bilayers under vertical gradient by other authors have been examined. The instability mechanisms are discussed and a qualitative interpretation of the different behaviors exhibited by the system is provided. In some configurations it is possible to find a codimension-two point created by the interaction of two Hopf modes with different frequencies and wave numbers. These results suggest to consider two liquid layers as an interesting prototype for the study of propagation and interaction of waves in the context of the Bénard-Marangoni problem.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(6 Pt 2): 066304, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11736273

ABSTRACT

In this work, we study the problem of onset of thermal convection in a fluid layer overlying a porous layer, the whole system being heated from below. We use Brinkman's model to describe the porous medium and determine the corresponding linear stability equations. The eigenvalue problem is solved by means of a modified Galerkin method. The behavior of the critical wave number and temperature gradient is discussed in terms of the various parameters of the system. We also emphasize the influence of the boundary conditions at the upper surface of the fluid layer; in particular, we examine the role of a free surface whose surface tension is temperature dependent (Marangoni effect). Comparison with earlier works is also made.

13.
Nature ; 412(6843): 145-9, 2001 Jul 12.
Article in English | MEDLINE | ID: mdl-11449263

ABSTRACT

Evidence is growing that hydrothermal venting occurs not only along mid-ocean ridges but also on old regions of the oceanic crust away from spreading centres. Here we report the discovery of an extensive hydrothermal field at 30 degrees N near the eastern intersection of the Mid-Atlantic Ridge and the Atlantis fracture zone. The vent field--named 'Lost City'--is distinctly different from all other known sea-floor hydrothermal fields in that it is located on 1.5-Myr-old crust, nearly 15 km from the spreading axis, and may be driven by the heat of exothermic serpentinization reactions between sea water and mantle rocks. It is located on a dome-like massif and is dominated by steep-sided carbonate chimneys, rather than the sulphide structures typical of 'black smoker' hydrothermal fields. We found that vent fluids are relatively cool (40-75 degrees C) and alkaline (pH 9.0-9.8), supporting dense microbial communities that include anaerobic thermophiles. Because the geological characteristics of the Atlantis massif are similar to numerous areas of old crust along the Mid-Atlantic, Indian and Arctic ridges, these results indicate that a much larger portion of the oceanic crust may support hydrothermal activity and microbial life than previously thought.


Subject(s)
Geologic Sediments , Water Microbiology , Atlantic Ocean , Evolution, Chemical , Marine Biology , Minerals , Origin of Life , Seawater , Temperature , X-Ray Diffraction
14.
J Colloid Interface Sci ; 203(2): 354-68, 1998 Jul 15.
Article in English | MEDLINE | ID: mdl-9705774

ABSTRACT

The effect of different mass transfer mechanisms on the Marangoni instability in a two-layer system of finite width is studied. A dilute soluble surfactant is transferred across the interface between two immiscible fluid phases. A linear stability analysis is developed, and the corresponding eigenvalue problem is solved analytically for the onset of monotonic instability. Mass transfer is assumed to be controlled by bulk diffusion or/and by the adsorption-desorption mechanism. The influences of the diffusivity ratio and the layer width ratio on the instability of the system are examined. Copyright 1998 Academic Press.

20.
Science ; 269(5227): 1092-5, 1995 Aug 25.
Article in English | MEDLINE | ID: mdl-17755532

ABSTRACT

A survey of hydrothermal activity along the superfast-spreading (approximately 150 millimeters per year) East Pacific Rise shows that hydrothermal plumes overlay approximately 60 percent of the ridge crest between 13 degrees 50' and 18 degrees 40'S, a plume abundance nearly twice that known from any other rige portion of comparable length. Plumes were most abundant where the axial cross section is inflated and an axial magma chamber is present. Plumes with high ratios of volatile ((3)He, CH(4), and H(2)S) to nonvolatile (Mn and Fe) species marked where hydrothermal circulation has been perturbed by recent magmatic activity. The high proportion of volatile-rich plumes observed implies that such episodes are more frequent here than on slower spreading ridges.

SELECTION OF CITATIONS
SEARCH DETAIL
...