Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Clin Genet ; 91(4): 576-588, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27761913

ABSTRACT

Duplication of the Xq28 region, involving MECP2 (dupMECP2), has been primarily described in males with severe developmental delay, spasticity, epilepsy, stereotyped movements and recurrent infections. Carrier mothers are usually asymptomatic with an extremely skewed X chromosome inactivation (XCI) pattern. We report a series of six novel symptomatic females carrying a de novo interstitial dupMECP2, and review the 14 symptomatic females reported to date, with the aim to further delineate their phenotype and give clues for genetic counselling. One patient was adopted and among the other 19 patients, seven (37%) had inherited their duplication from their mother, including three mildly (XCI: 70/30, 63/37, 100/0 in blood and random in saliva), one moderately (XCI: random) and three severely (XCI: uninformative and 88/12) affected patients. After combining our data with data from the literature, we could not show a correlation between XCI in the blood or duplication size and the severity of the phenotype, or explain the presence of a phenotype in these females. These findings confirm that an abnormal phenotype, even severe, can be a rare event in females born to asymptomatic carrier mothers, making genetic counselling difficult in couples at risk in terms of prognosis, in particular in prenatal cases.


Subject(s)
Gene Duplication , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics , Adolescent , Adult , Child , Chromosomes, Human, X/genetics , Female , Genetic Counseling , Humans , Intellectual Disability/physiopathology , Male , Mental Retardation, X-Linked/physiopathology , Pedigree , Phenotype
5.
Childs Nerv Syst ; 24(4): 509-13, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17906865

ABSTRACT

INTRODUCTION: A 14-year-old girl, followed in our department for Marfan syndrome, presented with postural headache for a month. Neurological examination was normal. The diagnosis of intracranial hypotension syndrome was suspected. DISCUSSION: Bilateral subdural hematomas were found on brain magnetic resonance imaging (MRI), and spinal MRI showed large lumbosacral arachnoid diverticula; no cerebrospinal fluid leaks could be found. Despite bed rest and hydration for 2 weeks, postural headache remained. Epidural blood patching was also performed. Subsequently, the patient became asymptomatic and could stand up after 1 day. Brain MRI did not find recurrent subdural hematoma after 1 month. Dural ectasia is one of the major criteria of Marfan syndrome, and it is often poorly symptomatic. Intracranial hypotension is a rare complication especially in children, and management is not standardized. In this case report, blood patching was sufficient. Further research into the diagnosis and management of spontaneous intracranial hypotension is required.


Subject(s)
Intracranial Hypertension/etiology , Marfan Syndrome/complications , Adolescent , Brain/pathology , Female , Humans , Magnetic Resonance Imaging , Marfan Syndrome/pathology , Spinal Cord/pathology
6.
J Med Genet ; 43(10): 788-92, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16690729

ABSTRACT

INTRODUCTION: Myopathy, encephalopathy, lactic acidosis, and stroke-like (MELAS) syndrome, a maternally inherited disorder that is among the most common mitochondrial DNA (mtDNA) diseases, is usually associated with the m.3242A>G mutation of the mitochondrial tRNA(leu) gene. Very few data are available with respect to prenatal diagnosis of this serious disease. The rate of mutant versus wild-type mtDNA (heteroplasmy) in fetal DNA is indeed considered to be a poor indicator of postnatal outcome. MATERIALS AND METHODS: Taking advantage of a novel semi-quantitative polymerase chain reaction test for m.3243A>G mutant load assessment, we carried out nine prenatal diagnoses in five unrelated women, using two different fetal tissues (chorionic villi v amniocytes) sampled at two or three different stages of pregnancy. RESULTS: Two of the five women, although not carrying m.3243A>G in blood or extra-blood tissues, were, however, considered at risk for transmission of the mutation, as they were closely related to MELAS-affected individuals. The absence of 3243A>G in the blood of first degree relatives was associated with no mutated mtDNA in the cardiovascular system (CVS) or amniocytes, and their three children are healthy, with a follow-up of 3 months-3 years. Among the six fetuses from the three carrier women, three were shown to be homoplasmic (0% mutant load), the remaining three being heteroplasmic, with a mutant load ranging from 23% to 63%. The fetal mutant load was fairly stable at two or three different stages of pregnancy in CVS and amniocytes. Although pregnancy was terminated in the case of the fetus with a 63% mutant load, all other children are healthy with a follow-up of 3 months-6 years. CONCLUSION: These data suggest that a prenatal diagnosis for MELAS syndrome might be helpful for at-risk families.


Subject(s)
DNA, Mitochondrial , Fetal Development/genetics , Genes, Mitochondrial/genetics , MELAS Syndrome/diagnosis , Prenatal Diagnosis/methods , Acidosis, Lactic/diagnosis , Acidosis, Lactic/embryology , Acidosis, Lactic/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Family , Female , Humans , Infant , MELAS Syndrome/embryology , MELAS Syndrome/genetics , Male , Mitochondrial Encephalomyopathies/diagnosis , Mitochondrial Encephalomyopathies/embryology , Mitochondrial Encephalomyopathies/genetics , Muscular Diseases/diagnosis , Muscular Diseases/embryology , Muscular Diseases/genetics , Pedigree , Polymerase Chain Reaction , Pregnancy , RNA, Transfer, Leu/genetics , Stroke/diagnosis , Stroke/embryology , Stroke/genetics
7.
J Med Genet ; 41(1): 14-7, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14729820

ABSTRACT

Respiratory chain complex I deficiency represents a genetically heterogeneous group of diseases resulting from mutations in mitochondrial or nuclear genes. Mutations have been reported in 13 of the 14 subunits encoding the core of complex I (seven mitochondrial and six nuclear genes) and these result in Leigh or Leigh-like syndromes or cardiomyopathy. In this study, a combination of denaturing high performance liquid chromatography and sequence analysis was used to study the NDUFS3 gene in a series of complex I deficient patients. Mutations found in this gene (NADH dehydrogenase iron-sulphur protein 3), coding for the seventh and last subunit of complex I core, were shown to cause late onset Leigh syndrome, optic atrophy, and complex I deficiency. A biochemical diagnosis of complex I deficiency on cultured amniocytes from a later pregnancy was confirmed through the identification of disease causing NDUFS3 mutations in these cells. While mutations in the NDUFS3 gene thus result in Leigh syndrome, a dissimilar clinical phenotype is observed in mutations in the NDUFV2 and NDUFS2 genes, resulting in encephalomyopathy and cardiomyopathy. The reasons for these differences are uncertain.


Subject(s)
Electron Transport Complex I/genetics , Leigh Disease/etiology , Leigh Disease/genetics , Mutation/genetics , NADH Dehydrogenase/genetics , Protein Subunits/genetics , Child , Electron Transport Complex I/deficiency , Fatal Outcome , Humans , Iron-Sulfur Proteins/deficiency , Iron-Sulfur Proteins/genetics , Leigh Disease/enzymology , Leigh Disease/pathology , Male , NADH Dehydrogenase/deficiency , Protein Subunits/deficiency
8.
J Med Genet ; 40(12): 896-9, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14684687

ABSTRACT

Starting from a cohort of 50 NADH-oxidoreductase (complex I) deficient patients, we carried out the systematic sequence analysis of all mitochondrially encoded complex I subunits (ND1 to ND6 and ND4L) in affected tissues. This approach yielded the unexpectedly high rate of 20% mutation identification in our series. Recurrent heteroplasmic mutations included two hitherto unreported (T10158C and T14487C) and three previously reported mutations (T10191C, T12706C and A13514G) in children with Leigh or Leigh-like encephalopathy. The recurrent mutations consistently involved T-->C transitions (p<10(-4)). This study supports the view that an efficient molecular screening should be based on an accurate identification of respiratory chain enzyme deficiency.


Subject(s)
DNA, Mitochondrial/genetics , Electron Transport Complex I/genetics , Mutation , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Female , Humans , Infant , Leigh Disease/genetics , Male
9.
Neuropediatrics ; 34(6): 311-7, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14681757

ABSTRACT

Cytochrome c oxidase (COX) deficiency has been associated with a wide spectrum of clinical features and may be caused by mutations in different genes of both the mitochondrial and the nuclear DNA. In an attempt to correlate the clinical phenotype with the genotype in 16 childhood cases, mtDNA was analysed for deletion, depletion, and mutations in the three genes encoding COX subunits and the 22 tRNA genes. Furthermore, nuclear DNA was analysed for mutations in the SURF1, SCO2, COX10, and COX17 genes and cases with mtDNA depletion were analysed for mutations in the TK2 gene. SURF1-mutations were identified in three out of four cases with Leigh syndrome while a mutation in the mitochondrial tRNA (trp) gene was identified in the fourth. One case with mtDNA depletion had mutations in the TK2 gene. In two cases with leukoencephalopathy, one case with encephalopathy, five cases with fatal infantile myopathy and cardiomyopathy, two cases with benign infantile myopathy, and one case with mtDNA depletion, no mutations were identified. We conclude that COX deficiency in childhood should be suspected in a wide range of clinical settings and although an increasing number of genetic defects have been identified, the underlying mutations remain unclear in the majority of the cases.


Subject(s)
Cytochrome-c Oxidase Deficiency/genetics , Mutation/genetics , Phenotype , Child , Child, Preschool , Female , Genotype , Humans , Infant , Infant, Newborn , Male
10.
J Med Genet ; 40(3): 188-91, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12624137

ABSTRACT

Leigh syndrome is a subacute necrotising encephalomyopathy frequently ascribed to mitochondrial respiratory chain deficiency. This condition is genetically heterogeneous, as mutations in both mitochondrial (mt) and nuclear genes have been reported. Here, we report the G13513A transition in the ND5 mtDNA gene in three unrelated children with complex I deficiency and a peculiar MRI aspect distinct from typical Leigh syndrome. Brain MRI consistently showed a specific involvement of the substantia nigra and medulla oblongata sparing the basal ganglia. Variable degrees of heteroplasmy were found in all tissues tested and a high percentage of mutant mtDNA was observed in muscle. The asymptomatic mothers presented low levels of mutant mtDNA in blood leucocytes. This mutation, which affects an evolutionary conserved amino acid (D393N), has been previously reported in adult patients with MELAS or LHON/MELAS syndromes, emphasising the clinical heterogeneity of mitochondrial DNA mutations. Since the G13513A mutation was found in 21% of our patients with Leigh syndrome and complex I deficiency (3/14), it appears that this mutation represents a frequent cause of Leigh-like syndrome, which should be systematically tested for molecular diagnosis in affected children and for genetic counselling in their maternal relatives.


Subject(s)
DNA, Mitochondrial/genetics , Leigh Disease/genetics , MELAS Syndrome/genetics , NADH Dehydrogenase/genetics , NADH, NADPH Oxidoreductases/deficiency , Brain/pathology , Child, Preschool , DNA, Mitochondrial/metabolism , Deoxyribonucleases, Type II Site-Specific/metabolism , Electron Transport Complex I , Humans , Infant , Leigh Disease/enzymology , Leigh Disease/pathology , MELAS Syndrome/enzymology , Magnetic Resonance Imaging , Male , NADH, NADPH Oxidoreductases/genetics , Point Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...