Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4834, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844446

ABSTRACT

Oceanic eddies are recognized as pivotal components in marine ecosystems, believed to concentrate a wide range of marine life spanning from phytoplankton to top predators. Previous studies have posited that marine predators are drawn to these eddies due to an aggregation of their forage fauna. In this study, we examine the response of forage fauna, detected by shipboard acoustics, across a broad sample of a thousand eddies across the world's oceans. While our findings show an impact of eddies on surface temperatures and phytoplankton in most cases, they reveal that only a minority (13%) exhibit significant effects on forage fauna, with only 6% demonstrating an oasis effect. We also show that an oasis effect can occur both in anticyclonic and cyclonic eddies, and that the few high-impact eddies are marked by high eddy amplitude and strong water-mass-trapping. Our study underscores the nuanced and complex nature of the aggregating role of oceanic eddies, highlighting the need for further research to elucidate how these structures attract marine predators.


Subject(s)
Ecosystem , Oceans and Seas , Phytoplankton , Animals , Phytoplankton/physiology , Temperature , Aquatic Organisms/physiology , Predatory Behavior/physiology , Acoustics
2.
PLoS One ; 18(8): e0284953, 2023.
Article in English | MEDLINE | ID: mdl-37540685

ABSTRACT

Ocean dynamics initiate the structure of nutrient income driving primary producers, and these, in turn, shape the distribution of subsequent trophic levels until the whole pelagic community reflects the physicochemical structure of the ocean. Despite the importance of bottom-up structuring in pelagic ecosystems, fine-scale studies of biophysical interactions along depth are scarce and challenging. To improve our understanding of such relationships, we analyzed the vertical structure of key oceanographic variables along with the distribution of acoustic biomass from multi-frequency acoustic data (38, 70, and 120 kHz) as a reference for pelagic fauna. In addition, we took advantage of species distribution databases collected at the same time to provide further interpretation. The study was performed in the Southwestern Tropical Atlantic of northeast Brazil in spring 2015 and autumn 2017, periods representative of canonical spring and autumn conditions in terms of thermohaline structure and current dynamics. We show that chlorophyll-a, oxygen, current, and stratification are important drivers for the distribution of sound scattering biota but that their relative importance depends on the area, the depth range, and the diel cycle. Prominent sound scattering layers (SSLs) in the epipelagic layer were associated with strong stratification and subsurface chlorophyll-a maximum. In areas where chlorophyll-a maxima were deeper than the peak of stratifications, SSLs were more correlated with stratification than subsurface chlorophyll maxima. Dissolved oxygen seems to be a driver in locations where lower oxygen concentration occurs in the subsurface. Finally, our results suggest that organisms seem to avoid strong currents core. However, future works are needed to better understand the role of currents on the vertical distribution of organisms.


Subject(s)
Chlorophyll , Ecosystem , Chlorophyll A , Biomass , Brazil , Atlantic Ocean
3.
Science ; 380(6647): 812-817, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37228198

ABSTRACT

Iron is an essential nutrient that regulates productivity in ~30% of the ocean. Compared with deep (>2000 meter) hydrothermal activity at mid-ocean ridges that provide iron to the ocean's interior, shallow (<500 meter) hydrothermal fluids are likely to influence the surface's ecosystem. However, their effect is unknown. In this work, we show that fluids emitted along the Tonga volcanic arc (South Pacific) have a substantial impact on iron concentrations in the photic layer through vertical diffusion. This enrichment stimulates biological activity, resulting in an extensive patch of chlorophyll (360,000 square kilometers). Diazotroph activity is two to eight times higher and carbon export fluxes are two to three times higher in iron-enriched waters than in adjacent unfertilized waters. Such findings reveal a previously undescribed mechanism of natural iron fertilization in the ocean that fuels regional hotspot sinks for atmospheric CO2.


Subject(s)
Carbon Dioxide , Iron , Nitrogen Fixation , Phytoplankton , Seawater , Ecosystem , Iron/metabolism , Oceans and Seas , Phytoplankton/growth & development , Phytoplankton/metabolism , Seawater/chemistry , Seawater/microbiology , Carbon Cycle , Carbon Dioxide/metabolism
4.
Sci Rep ; 12(1): 8787, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610249

ABSTRACT

Tropical marine ecosystems are highly biodiverse and provide resources for small-scale fisheries and tourism. However, precise information on fish spatial distribution is lacking, which limits our ability to reconcile exploitation and conservation. We combined acoustics to video observations to provide a comprehensive description of fish distribution in a typical tropical environment, the Fernando de Noronha Archipelago (FNA) off Northeast Brazil. We identified and classified all acoustic echoes into ten fish assemblage and two triggerfish species. This opened up the possibility to relate the different spatial patterns to a series of environmental factors and the level of protection. We provide the first biomass estimation of the black triggerfish Melichthys niger, a key tropical player. By comparing the effects of euphotic and mesophotic reefs we show that more than the depth, the most important feature is the topography with the shelf-break as the most important hotspot. We also complete the portrait of the island mass effect revealing a clear spatial dissymmetry regarding fish distribution. Indeed, while primary productivity is higher downstream, fish concentrate upstream. The comprehensive fish distribution provided by our approach is directly usable to implement scientific-grounded Marine Spatial Planning.


Subject(s)
Coral Reefs , Ecosystem , Acoustics , Animals , Biodiversity , Fisheries , Fishes
5.
PLoS One ; 9(2): e88054, 2014.
Article in English | MEDLINE | ID: mdl-24505374

ABSTRACT

Bifrequency acoustic data, hydrological measurements and satellite data were used to study the vertical distribution of macrozooplankton in the Bay of Biscay in relation to the hydrological conditions and fish distribution during spring 2009. The most noticeable result was the observation of a 'biocline' during the day i.e., the interface where zooplankton biomass changes more rapidly with depth than it does in the layers above or below. The biocline separated the surface layer, almost devoid of macrozooplankton, from the macrozooplankton-rich deeper layers. It is a specific vertical feature which ties in with the classic diel vertical migration pattern. Spatiotemporal correlations between macrozooplankton and environmental variables (photic depth, thermohaline vertical structure, stratification index and chlorophyll-a) indicate that no single factor explains the macrozooplankton vertical distribution. Rather a set of factors, the respective influence of which varies from region to region depending on the habitat characteristics and the progress of the spring stratification, jointly influence the distribution. In this context, the macrozooplankton biocline is potentially a biophysical response to the search for a particular depth range where light attenuation, thermohaline vertical structure and stratification conditions together provide a suitable alternative to the need for expending energy in reaching deeper water without the risk of being eaten.


Subject(s)
Predatory Behavior/physiology , Zooplankton/physiology , Animals , Bays , Biomass , Ecosystem , Environment , Fishes/physiology , Fresh Water , Hydrology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...