Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 806(Pt 2): 150422, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34852431

ABSTRACT

This study aimed to simulate oak and beech forest growth under various scenarios of climate change and to evaluate how the forest response depends on site properties and particularly on stand characteristics using the individual process-based model HETEROFOR. First, this model was evaluated on a wide range of site conditions. We used data from 36 long-term forest monitoring plots to initialize, calibrate, and evaluate HETEROFOR. This evaluation showed that HETEROFOR predicts individual tree radial growth and height increment reasonably well under different growing conditions when evaluated on independent sites. In our simulations under constant CO2 concentration ([CO2]cst) for the 2071-2100 period, climate change induced a moderate net primary production (NPP) gain in continental and mountainous zones and no change in the oceanic zone. The NPP changes were negatively affected by air temperature during the vegetation period and by the annual rainfall decrease. To a lower extent, they were influenced by soil extractable water reserve and stand characteristics. These NPP changes were positively affected by longer vegetation periods and negatively by drought for beech and larger autotrophic respiration costs for oak. For both species, the NPP gain was much larger with rising CO2 concentration ([CO2]var) mainly due to the CO2 fertilisation effect. Even if the species composition and structure had a limited influence on the forest response to climate change, they explained a large part of the NPP variability (44% and 34% for [CO2]cst and [CO2]var, respectively) compared to the climate change scenario (5% and 29%) and the inter-annual climate variability (20% and 16%). This gives the forester the possibility to act on the productivity of broadleaved forests and prepare them for possible adverse effects of climate change by reinforcing their resilience.


Subject(s)
Fagus , Quercus , Climate Change , Forests , Trees
2.
Sci Total Environ ; 698: 134129, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31499344

ABSTRACT

Forest health status is negatively influenced by climate change, air pollution and other disturbances. Extreme droughts reduce stand productivity, increase vulnerability to pests, and can even provoke mortality. Growth dynamics at tree and forest stand levels are considered the main indicators of stability and productivity in forest ecosystem structures. The main climate drivers for tree growth were identified using basal area increment (BAI) as a synthetic indicator. BAI chronologies were obtained from increment cores for 1960-2012 period. Six species were analysed in an attempt to identify their growth limiting factors. For the most important oak species in Romania, resilience components were computed in order to analyse their response to drought events. Moreover, growth dynamics were analysed for two species in mixed and monoculture forests. The results suggest that - in comparison to Picea abies and Fagus sylvatica, the sensitivity of Quercus spp. is much higher (0.3-0.47). Oakspecies situated in the most drought-affected areas are sensitive to rainfall values from the previous autumn, current spring, and early summer, with April monthly values having the most significant effect on BAI increment (r = 0.47*) The most sensitive species to drought is Q. cerris and Q. frainetto. Their BAI reduction during drought is >50% compared with the BAI values before the drought period. The recovery capacity of tree growth following drought events is lower for Q. robur and Q. petraea and higher for Q. cerris and Q. frainetto. The mixed forest stands have not showed a constant higher resistance to drought.


Subject(s)
Climate Change , Environmental Monitoring , Forestry , Forests , Trees , Droughts , Ecosystem , Fagus , Quercus , Romania , Seasons
3.
Sci Total Environ ; 689: 1104-1114, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31466150

ABSTRACT

Natural and anthropogenic disturbances pose a significant threat to forest condition. Continuous, reliable and accurate forest monitoring systems are needed to provide early warning of potential declines in forest condition. To address that need, state-of-the-art simulations models were used to evaluate the utility of C-, L- and P-band synthetic aperture radar (SAR) sensors within an integrated Earth-Observation monitoring system for beech, oak and coniferous forests in Romania. The electromagnetic simulations showed differentiated sensitivity to vegetation water content, leaf area index, and forest disturbance depending on SAR wavelength and forest structure. C-band data was largely influenced by foliage volume and therefore may be useful for monitoring defoliation. Changes in water content modulated the C-band signal by <1 dB which may be insufficient for a meaningful retrieval of drought effects on forest. C-band sensitivity to significant clear-cuts was rather low (1.5 dB). More subtle effects such as selective logging or thinning may not be easily detected using C- or L-band data with the longer P-band needed for retrieving small intensity forest disturbances. Overall, the simulations emphasize that additional effort is needed to overcome current limitations arising from the use of a single frequency, acquisition time and geometry by tapping the advantages of dense time series, and by combining acquisitions from active and passive sensors. The simulation results may be applicable to forests outside of Romania since the forests types used in the study have similar morphological characteristics to forests elsewhere in Europe.


Subject(s)
Environmental Monitoring/methods , Forests , Radar , Romania
4.
Sci Total Environ ; 622-623: 1225-1240, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29890590

ABSTRACT

With an overarching goal of addressing global and regional sustainability challenges, Long Term Socio-Ecological Research Platforms (LTSER) aim to conduct place-based research, to collect and synthesize both environmental and socio-economic data, and to involve a broader stakeholder pool to set the research agenda. To date there have been few studies examining the output from LTSER platforms. In this study we enquire if the socio-ecological research from 25 self-selected LTSER platforms of the International Long-Term Ecological Research (ILTER) network has produced research products which fulfil the aims and ambitions of the paradigm shift from ecological to socio-ecological research envisaged at the turn of the century. In total we assessed 4983 publically available publications, of which 1112 were deemed relevant to the socio-ecological objectives of the platform. A series of 22 questions were scored for each publication, assessing relevance of responses in terms of the disciplinary focus of research, consideration of human health and well-being, degree of stakeholder engagement, and other relevant variables. The results reflected the diverse origins of the individual platforms and revealed a wide range in foci, temporal periods and quantity of output from participating platforms, supporting the premise that there is a growing trend in socio-ecological research at long-term monitoring platforms. Our review highlights the challenges of realizing the top-down goal to harmonize international network activities and objectives and the need for bottom-up, self-definition for research platforms. This provides support for increasing the consistency of LTSER research while preserving the diversity of regional experiences.

5.
Sci Total Environ ; 596-597: 396-404, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28448915

ABSTRACT

Ground-level ozone (O3) affects trees through visible leaf injury, accelerating leaf senescence, declining foliar chlorophyll content, photosynthetic activity, growth, carbon sequestration, predisposing to pests attack and a variety of other physiological effects. Tree crown defoliation is one of the most important parameters that is representative of forest health and vitality. Effects of air pollution on forests have been investigated through manipulative experiments that are not representative of the real environmental conditions observed in the field. In this work we investigated the role of O3 concentration and other metrics (AOT40 and POD0) in affecting crown defoliation in temperate Romanian forests. The impacts of O3 were estimated in combination with nitrogen pollutants, climatic factors and orographic conditions, by applying a non-linear modelling approach (Random Forest and Generalised Regression Models). Ozone concentration and AOT40 under Romanian conditions were more important than meteorological parameters in affecting crown defoliation. In these particular conditions, POD0 never exceeded the critical level suggested by previous literature for forest protection, and thus was not important in affecting crown defoliation.


Subject(s)
Air Pollutants/toxicity , Ozone/toxicity , Plant Leaves/drug effects , Trees/drug effects , Air Pollution , Climate , Romania
6.
Environ Monit Assess ; 184(12): 7491-515, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22234644

ABSTRACT

Air pollution, bulk precipitation, throughfall, soil condition, foliar nutrients, as well as forest health and growth were studied in 2006-2009 in a long-term ecological research (LTER) network in the Bucegi Mountains, Romania. Ozone (O(3)) was high indicating a potential for phytotoxicity. Ammonia (NH(3)) concentrations rose to levels that could contribute to deposition of nutritional nitrogen (N) and could affect biodiversity changes. Higher that 50% contribution of acidic rain (pH < 5.5) contributed to increased acidity of forest soils. Foliar N concentrations for Norway spruce (Picea abies), Silver fir (Abies alba), Scots pine (Pinus sylvestris), and European beech (Fagus sylvatica) were normal, phosphorus (P) was high, while those of potassium (K), magnesium (Mg), and especially of manganese (Mn) were significantly below the typical European or Carpathian region levels. The observed nutritional imbalance could have negative effects on forest trees. Health of forests was moderately affected, with damaged trees (crown defoliation >25%) higher than 30%. The observed crown damage was accompanied by the annual volume losses for the entire research forest area up to 25.4%. High diversity and evenness specific to the stand type's structures and local climate conditions were observed within the herbaceous layer, indicating that biodiversity of the vascular plant communities was not compromised.


Subject(s)
Air Pollution/analysis , Ecosystem , Environmental Monitoring , Trees/growth & development , Acid Rain/analysis , Air Pollution/statistics & numerical data , Biodiversity , Ecology , Nitrogen/analysis , Ozone/analysis , Phosphorus/analysis , Romania , Trees/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...