Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Dermatol ; 27(5): 460-462, 2018 05.
Article in English | MEDLINE | ID: mdl-28603853

ABSTRACT

Keratinocytes of the basal layer function are to maintain tissue homoeostasis and to fulfil skin repair in response to an external aggression. In wound-healing, during re-epithelialization phase, epithelial precursor cells gradually migrate from the edges of the wound. The epidermal reconstruction model called standard model allows the vertical skin regeneration process (proliferation/differentiation) to being investigated, and keratinocyte function in preserving skin homoeostasis to being assessed. Here, we developed and characterized a 3D migration model, which introduces a step of keratinocytes migration such as the one observed in the phase of re-epithelialization in wound-healing process. We validated the added value and the discriminative potential of this model by demonstrating pro-epithelializing effects of compounds. This new model allows the role of keratinocytes in different biomechanical and environmental requests to being better understood, and brings a new tool for compound screening and the study of mechanisms involved in skin regeneration.


Subject(s)
In Vitro Techniques , Keratinocytes/physiology , Models, Biological , Re-Epithelialization , Female , Humans
2.
Exp Dermatol ; 22(9): 604-6, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23947676

ABSTRACT

The decline of tissue regenerative potential of skin and hair is a hallmark of physiological ageing and may be associated with age-related changes in tissue-specific stem cells and/or their environment. Human hair follicles (hHF) contain keratinocytes having the property of stem cells such as clonogenic potential. Growth capacity of hHF keratinocytes shows that most of the colony-forming cells are classified as holoclones, meroclones or paraclones when analysed in a clonal assay (Cell, Volume 76, page 1063). Despite the well-known impact of ageing on human hair growth, little is known about changes in hHF keratinocyte clonogenic potential with age. This study aimed at assessing the clone-forming efficiency (CFE) of hHF keratinocytes from three age groups of human donors. It demonstrates that ageing affects hHF keratinocyte CFE.


Subject(s)
Aging/pathology , Hair Follicle/cytology , Keratinocytes/cytology , Adolescent , Adult , Adult Stem Cells/cytology , Aged , Colony-Forming Units Assay , Humans , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...