Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 92(3): 033523, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33820041

ABSTRACT

A one dimensional, absolutely calibrated pinhole camera system was installed on the DIII-D tokamak to measure edge Lyman-alpha (Ly-α) emission from hydrogen isotopes, which can be used to infer neutral density and ionization rate profiles. The system is composed of two cameras, each providing a toroidal fan of 20 lines of sight, viewing the plasma edge on the inboard and outboard side of DIII-D. The cameras' views lie in a horizontal plane 77 cm below the midplane. At its tangency radius, each channel provides a radial resolution of ∼2 cm full width at half maximum (FWHM) with a total coverage of 22 cm. Each camera consists of a rectangular pinhole, Ly-α reflective mirror, narrow-band Ly-α transmission filter, and a 20 channel AXUV photodetector. The combined mirror and transmission filter have a FWHM of 5 nm, centered near the Ly-α wavelength of 121.6 nm and is capable of rejecting significant, parasitic carbon-III (C-III) emission from intrinsic plasma impurities. To provide a high spatial resolution measurement in a compact footprint, the camera utilizes advanced engineering and manufacturing techniques including 3D printing, high stability mirror mounts, and a novel alignment procedure. Absolutely calibrated, spatially resolved Ly-α brightness measurements utilize a bright, isolated line with low parasitic surface reflections and enable quantitative comparison to modeling to study divertor neutral leakage, main chamber fueling, and radial particle transport.

3.
Rev Sci Instrum ; 89(5): 053503, 2018 May.
Article in English | MEDLINE | ID: mdl-29864849

ABSTRACT

A newly upgraded correlation electron cyclotron emission (CECE) diagnostic has been installed on the ASDEX Upgrade tokamak and has begun to perform experimental measurements of electron temperature fluctuations. CECE diagnostics measure small amplitude electron temperature fluctuations by correlating closely spaced heterodyne radiometer channels. This upgrade expanded the system from six channels to thirty, allowing simultaneous measurement of fluctuation level radial profiles without repeat discharges, as well as opening up the possibility of measuring radial turbulent correlation lengths. Newly refined statistical techniques have been developed in order to accurately analyze the fluctuation data collected from the CECE system. This paper presents the hardware upgrades for this system and the analysis techniques used to interpret the raw data, as well as measurements of fluctuation spectra and fluctuation level radial profiles.

4.
Rev Sci Instrum ; 89(4): 043512, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29716369

ABSTRACT

An array of flush-mounted and toroidally elongated Langmuir probes (henceforth called rail probes) have been specifically designed for the Alcator C-Mod's vertical target plate divertor and operated over multiple campaigns. The "flush" geometry enables the tungsten electrodes to survive high heat flux conditions in which traditional "proud" tungsten electrodes suffer damage from melting. The toroidally elongated rail-like geometry reduces the influence of sheath expansion, which is an important effect to consider in the design and interpretation of flush-mounted Langmuir probes. The new rail probes successfully operated during C-Mod's FY2015 and FY2016 experimental campaigns with no evidence of damage, despite being regularly subjected to heat flux densities parallel to the magnetic field exceeding ∼1 GW m-2 for short periods of time. A comparison between rail and proud probe data indicates that sheath expansion effects were successfully mitigated by the rail design, extending the use of these Langmuir probes to incident magnetic field line angles as low as 0.5°.

5.
Rev Sci Instrum ; 83(10): 10E311, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126971

ABSTRACT

A correlation electron cyclotron emission (CECE) diagnostic has been installed in Alcator C-Mod. In order to measure electron temperature fluctuations, this diagnostic uses a spectral decorrelation technique. Constraints obtained with nonlinear gyrokinetic simulations guided the design of the optical system and receiver. The CECE diagnostic is designed to measure temperature fluctuations which have k(θ) ≤ 4.8 cm(-1) (k(θ)ρ(s) < 0.5) using a well-focused beam pattern. Because the CECE diagnostic is a dedicated turbulence diagnostic, the optical system is also flexible, which allows for various collimating lenses and antenna to be used. The system overview and the demonstration of its operability as designed are presented in this paper.

6.
Rev Sci Instrum ; 81(10): 10D507, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033862

ABSTRACT

A poloidally viewing far infrared polarimeter diagnostic is being developed for the Alcator C-Mod tokamak, and will be used to determine the q-profile and to study density and magnetic field fluctuations. A three-chord version of what will eventually be up to a ten-chord system has been designed and fabricated and will be installed on C-Mod before the end of the current run period. Bench tests of a single chord mock-up of this system show acceptable noise levels for the planned measurements. We will discuss the analysis and experimental techniques used to diagnose and reduce noise sources.

SELECTION OF CITATIONS
SEARCH DETAIL
...