Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res Ther ; 14(1): 96, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076906

ABSTRACT

BACKGROUND: Constructs currently used to repair or replace congenitally diseased pediatric heart valves lack a viable cell population capable of functional adaptation in situ, necessitating repeated surgical intervention. Heart valve tissue engineering (HVTE) can address these limitations by producing functional living tissue in vitro that holds the potential for somatic growth and remodelling upon implantation. However, clinical translation of HVTE strategies requires an appropriate source of autologous cells that can be non-invasively harvested from mesenchymal stem cell (MSC)-rich tissues and cultured under serum- and xeno-free conditions. To this end, we evaluated human umbilical cord perivascular cells (hUCPVCs) as a promising cell source for in vitro production of engineered heart valve tissue. METHODS: The proliferative, clonogenic, multilineage differentiation, and extracellular matrix (ECM) synthesis capacities of hUCPVCs were evaluated in a commercial serum- and xeno-free culture medium (StemMACS™) on tissue culture polystyrene and benchmarked to adult bone marrow-derived MSCs (BMMSCs). Additionally, the ECM synthesis potential of hUCPVCs was evaluated when cultured on polycarbonate polyurethane anisotropic electrospun scaffolds, a representative biomaterial for in vitro HVTE. RESULTS: hUCPVCs had greater proliferative and clonogenic potential than BMMSCs in StemMACS™ (p < 0.05), without differentiation to osteogenic and adipogenic phenotypes associated with valve pathology. Furthermore, hUCPVCs cultured with StemMACS™ on tissue culture plastic for 14 days synthesized significantly more total collagen, elastin, and sulphated glycosaminoglycans (p < 0.05), the ECM constituents of the native valve, than BMMSCs. Finally, hUCPVCs retained their ECM synthesizing capacity after 14 and 21 days in culture on anisotropic electrospun scaffolds. CONCLUSION: Overall, our findings establish an in vitro culture platform that uses hUCPVCs as a readily-available and non-invasively sourced autologous cell population and a commercial serum- and xeno-free culture medium to increase the translational potential of future pediatric HVTE strategies. This study evaluated the proliferative, differentiation and extracellular matrix (ECM) synthesis capacities of human umbilical cord perivascular cells (hUCPVCs) when cultured in serum- and xeno-free media (SFM) against conventionally used bone marrow-derived MSCs (BMMSCs) and serum-containing media (SCM). Our findings support the use of hUCPVCs and SFM for in vitro heart valve tissue engineering (HVTE) of autologous pediatric valve tissue. Figure created with BioRender.com.


Subject(s)
Mesenchymal Stem Cells , Tissue Engineering , Adult , Humans , Child , Umbilical Cord , Cell Differentiation , Culture Media , Cells, Cultured , Cell Proliferation
2.
Ann Biomed Eng ; 50(9): 1073-1089, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35622208

ABSTRACT

Repair and replacement solutions for congenitally diseased heart valves capable of post-surgery growth and adaptation have remained elusive. Tissue engineered heart valves (TEHVs) offer a potential biological solution that addresses the drawbacks of existing valve replacements. Typically, TEHVs are made from thin, fibrous biomaterials that either become cell populated in vitro or in situ. Often, TEHV designs poorly mimic the anisotropic mechanical properties of healthy native valves leading to inadequate biomechanical function. Mechanical conditioning of engineered tissues with anisotropic strain application can induce extracellular matrix remodelling to alter the anisotropic mechanical properties of a construct, but implementation has been limited to small-scale set-ups. To address this limitation for TEHV applications, we designed and built a mechanobioreactor capable of modulating biaxial strain anisotropy applied to large, thin, biomaterial sheets in vitro. The bioreactor can independently control two orthogonal stretch axes to modulate applied strain anisotropy on biomaterial sheets from 13 × 13 mm2 to 70 × 40 mm2. A design of experiments was performed using experimentally validated finite element (FE) models and demonstrated that biaxial strain was applied uniformly over a larger percentage of the cell seeded area for larger sheets (13 × 13 mm2: 58% of sheet area vs. 52 × 31 mm2: 86% of sheet area). Furthermore, bioreactor prototypes demonstrated that over 70% of the cell seeding area remained uniformly strained under different prescribed protocols: equibiaxial amplitudes between 5 to 40%, cyclic frequencies between 0.1 to 2.5 Hz and anisotropic strain ratios between 0:1 (constrained uniaxial) to 2:1. Lastly, proof-of-concept experiments were conducted where we applied equibiaxial (εx = εy = 8.75%) and anisotropic (εx = 12.5%, εy = 5%) strain protocols to cell-seeded, electrospun scaffolds. Cell nuclei and F-actin aligned to the vector-sum strain direction of each prescribed protocol (nuclei alignment: equibiaxial: 43.2° ± 1.8°, anisotropic: 17.5° ± 1.7°; p < 0.001). The abilities of this bioreactor to prescribe different strain amplitude, frequency and strain anisotropy protocols to cell-seeded scaffolds will enable future studies into the effects of anisotropic loading protocols on mechanically conditioned TEHVs and other engineered planar connective tissues.


Subject(s)
Biocompatible Materials , Tissue Engineering , Anisotropy , Extracellular Matrix , Heart Valves , Stress, Mechanical , Tissue Engineering/methods
3.
Tissue Eng Part C Methods ; 27(1): 35-46, 2021 01.
Article in English | MEDLINE | ID: mdl-33349127

ABSTRACT

Many children born with congenital heart disease need a heart valve repair or replacement. Currently available repair materials and valve replacements are incapable of growth, repair, and adaptation, rendering them inadequate for growing children. Heart valve tissue engineering (HVTE) aims to develop living replacement valves that can meet these needs. Among numerous cell sources for in vitro HVTE, umbilical cord perivascular cells (UCPVCs) are particularly attractive because they are autologous, readily available, and have excellent regenerative capacity. As an essential step toward preclinical testing of heart valves engineered from UCPVCs, the goal of this study was to establish methods to isolate, expand, and promote extracellular matrix (ECM) synthesis by UCPVCs from pigs (porcine umbilical cord perivascular cells [pUCPVCs]), as a relevant preclinical model. We determined that Dulbecco's modified Eagle's medium with 20% fetal bovine serum supported isolation and substantial expansion of pUCPVCs, whereas media designed for human mesenchymal stromal cell (MSC) expansion did not. We further demonstrated the capacity of pUCPVCs to synthesize the main ECM components of heart valves (collagen type I, elastin, and glycosaminoglycans), with maximal collagen and elastin per-cell production occurring in serum-free culture conditions using StemMACS™ MSC Expansion Media. Altogether, these results establish protocols that enable the use of pUCPVCs as a viable cell source for preclinical testing of engineered heart valves. Impact statement This study establishes methods to successfully isolate, expand, and promote the synthesis of the main extracellular matrix components of heart valves (collagen type I, elastin, and glycosaminoglycans) by porcine umbilical cord perivascular cells (pUCPVCs). These protocols enable further evaluation of pUCPVCs as an autologous, readily available, and clinically relevant cell source for preclinical testing of pediatric tissue-engineered heart valves.


Subject(s)
Heart Valves , Tissue Engineering , Umbilical Cord , Animals , Collagen , Extracellular Matrix , Humans , Swine , Umbilical Cord/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...