Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 25(1): 248, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38443859

ABSTRACT

BACKGROUND: Quality traits are essential determinants of consumer preferences. Dioscorea alata (Greater Yam), is a starchy tuber crop in tropical regions. However, a comprehensive understanding of the genetic basis underlying yam tuber quality remains elusive. To address this knowledge gap, we employed population genomics and candidate gene association approaches to unravel the genetic factors influencing the quality attributes of boiled yam. METHODS AND RESULTS: Comparative genomics analysis of 45 plant species revealed numerous novel genes absent in the existing D. alata gene annotation. This approach, adding 48% more genes, significantly enhanced the functional annotation of three crucial metabolic pathways associated with boiled yam quality traits: pentose and glucuronate interconversions, starch and sucrose metabolism, and flavonoid biosynthesis. In addition, the whole-genome sequencing of 127 genotypes identified 27 genes under selection and 22 genes linked to texture, starch content, and color through a candidate gene association analysis. Notably, five genes involved in starch content and cell wall composition, including 1,3-beta Glucan synthase, ß-amylase, and Pectin methyl esterase, were common to both approaches and their expression levels were assessed by transcriptomic data. CONCLUSIONS: The analysis of the whole-genome of 127 genotypes of D. alata and the study of three specific pathways allowed the identification of important genes for tuber quality. Our findings provide insights into the genetic basis of yam quality traits and will help the enhancement of yam tuber quality through breeding programs.


Subject(s)
Dioscorea , Dioscorea/genetics , Plant Breeding , Genomics , Phenotype , Starch
2.
J Sci Food Agric ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872724

ABSTRACT

Roots, tubers and bananas (RTBs) contribute immensely to food security and livelihoods in sub-Saharan Africa, Asia and Latin America. The adoption of RTB genotypes in these regions relies on the interplay among agronomic traits, ease of processing and consumer preference. In breeding RTBs, until recently little attention was accorded key textural traits preferred by consumers. Moreover, a lack of standard, discriminant, repeatable protocols that can be used to measure the textural traits deter linkages between breeding better RTB genotypes and end user/consumer preferences. RTB products texture - that is, behaviour of RTB food products under unique deformations, such as disintegration and the flow of a food under force - is a critical component of these preferences. The preferences consumers have for certain product texture can be evaluated from expert sensory panel and consumer surveys, which are useful tools in setting thresholds for textural traits, and inform breeders on what to improve in the quality of RTBs. Textural characterization of RTBs under standard operating procedures (SOPs) is important in ensuring the standardization of texture measurement conditions, predictability of textural quality of RTBs, and ultimately definition of RTB food product profiles. This paper reviews current SOPs for the textural characterization of RTBs, including their various associated methods, parameters, challenges and merits. Case studies of texture characterized during development of SOPs and evaluation of texture of RTB populations are discussed, together with insights into key textural attributes and correlations between instrumental, sensory and consumer assessment of texture unique to various RTB food products. Hardness was considered a universal key textural attribute to discriminate RTBs. The review should provide adequate insight into texture of RTB food products and critical factors in their measurement. It aims to promote inclusion of texture in breeding pipelines by investigating which textural traits are prioritized by consumers, particularly since the inclusion of textural traits has recently gained prominence by breeders in improving RTBs. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Plants (Basel) ; 11(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36432765

ABSTRACT

The impacts of water supply reduction and cold storage were investigated on the peels and pulps of cv. Cogshall mangoes, regarding their phenolic compound contents. Phenolics identification was operated using HPLC-MSn for both compartments revealing an unbalanced repartition. Peels had a richer and more complex profile, counting xanthone glycoside (mangiferin), flavonoids (quercetin, kaempferol) and majorly gallotannins. Pulps presented smaller amounts of phenolics and a simpler profile majorly represented by gallotannins and gallic acid derivatives. During fruit ripening, the phenolic contents decreased in both compartments, but faster in the pulp. This behavior can be attributed to the oxidative stress observed in mango pulp during ripening. Cutting down the water supply during the fruit growth triggered an increase in phenolic contents of both the peels and pulp of mango fruits. This increase affected all compounds. Cold storage at 12 or 7 °C led to an increase in mangiferin and flavonoids contents in the fruit peel, interpreted as a stress-response reaction.

4.
Food Microbiol ; 108: 104095, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36088111

ABSTRACT

Processing, such as fresh cutting and drying, is essential to enhance profitability; therefore, to limit waste and reduce losses in fruit production such as mangoes. Metabarcoding and microbial enumeration methods were utilized to explore the structure of mango microbiota, as well as their evolution after processing. Two mango ripening stages of cv. Cogshall were selected and processed into fresh-cut pieces or dried slices. Microbiological and physicochemical parameters were monitored during product storage, in order to assess the dynamics of quantitative and qualitative variations of the microbial flora. Proteobacteria was the dominant bacterial phylum of the mango surface and accounted for 73.16%, followed by Actinobacteria (10.16%), Bacteroidetes (7.82%) and Firmicutes (6.68%). Aureobasidium and Cladosporium were the only two genera shared between all types of samples (peel surface, dried slices and mango fresh-cut). However, the bacterial genera Lactobacillus and Pantoea were the most abundant in fresh-cut mango after 14 days of storage. Ascomycota was the dominant fungal phylum in the mango surface and accounted for 90.76% of the total number of detected sequences, followed by Basidiomycota (9.21%). In total, 866 microbial genera were associated with mango surface (562 bacterial and 304 fungal). Among detected yeast genera, Saccharomyces, Candida and Malassezia prevailed in mango flesh and were replaced by Wickerhamomyces after 14 days of storage. Alpha and beta diversity analyzes revealed differences in fungal and bacterial communities on fruit peel, in fresh-cut, dried slices, and during conservation (fresh-cut and dried slices). Mango processing (washing, peeling, cutting and drying) reduced the richness and the microbial diversity (bacterial and fungal) associated to the fruit, and drying limits the development of cultivable microorganisms during storage in comparison to fresh-cuts mangoes.


Subject(s)
Mangifera , Mycobiome , Bacteria/genetics , Food Handling/methods , Mangifera/chemistry , Trees
5.
Foods ; 11(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35267289

ABSTRACT

A previous study demonstrated that the color of 4 mm mango slices is altered very slightly by drying for 5 h at 60 °C, 30% RH and 1 m/s. The objectives of this complementary study were to determine the impact of various drying procedures encountered in the drying units on color alterations of sulfite-free mango slices from heterogeneous raw material due to variable maturity degrees of mangoes. Drying procedures with various temperature/humidity/duration combinations were performed to analyze their effects on the color of natural dried mangoes according to the degree of fruit maturity. They were dried at an air speed of 1.0 m/s for 5 h according to 3 schemes: standard drying (SD) at 60 °C and 30% RH; wet drying (WD) for 1 h at 60 °C and 60% RH, followed by 4 h SD; and finally, hot drying (HD) for 4 h SD, followed by 1 h at 80 °C and 30% RH. The color of the mango slices was analyzed before and after drying. SD preserves the color of fresh mangoes very well, whatever their maturity stage. A relatively slow drying onset corresponding to WD has a highly adverse impact, which becomes greater as the degree of maturity increases. There is already significant browning on mangoes with near-optimum quality (L* = 75; H* = 92). Applying high temperature at the end of the drying procedure (HD) for 20% of the time has a more limited adverse impact with immature mangoes that are the most sensitive. Linear regressions were assessed to represent the relationships of color differences between drying schemes according to mango maturity degrees. These statistical models showed a significant increase in color degradation in the case of WD and a decrease in color differences in the case of HD with the advance in fruit maturity.

6.
Tree Physiol ; 41(12): 2293-2307, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34089058

ABSTRACT

The negative effects of fruit production during one cycle on reproduction during the following cycle are generally explained by two complementary processes: hormone synthesis and carbohydrate mobilization. Our study focused on mango (Mangifera indica L.) for which it has been shown that reproduction decreases and delays vegetative bud outgrowth. This, in turn, affects flowering and fruiting in the following cycle. Vegetative growth therefore plays a pivotal role in irregular fruit production patterns across consecutive years. Our aim was to decipher the respective roles of hormones and carbohydrates on the negative effects of reproduction on vegetative growth. We analyzed the changes in various hormone (auxin, cytokinin, abscisic acid) and carbohydrate (glucose, sucrose, starch) concentrations in terminal axes with vegetative and reproductive fates of two mango cultivars, Cogshall and José, characterized by different bearing patterns, across consecutive phenological periods during a growing cycle. Auxin concentrations were high in inflorescences, fruit peduncles and axes bearing inflorescences or fruit, suggesting auxin-induced inhibition of vegetative bud outgrowth in the flowering and fruiting axes. Moreover, growing fruits, which are strong sink organs, depleted carbohydrates from non-fruiting axes. During vegetative growth, this starch depletion probably contributed to decreasing the probability of and to delaying vegetative bud outgrowth of reproductive axes for Cogshall, and of reproductive and nonreproductive axes for José. Starch dynamics in quiescent and flowering growth units during early fruit growth and their starch concentrations at fruit maturity differed between the two cultivars, presumably in relation to the observed contrasted crop loads and/or to differences in photosynthetic capacity or carbohydrate allocation. These differences between the two cultivars in terms of starch concentration in terminal axes during vegetative growth could partly explain their different bearing patterns.


Subject(s)
Mangifera , Fruit , Hormones/metabolism , Reproduction , Sucrose/metabolism
7.
Foods ; 10(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668826

ABSTRACT

The purpose of this study was to evaluate the impact of the harvest stage, ripening conditions and maturity on color changes of cv. 'Cogshall' and cv. 'Kent' variety mangoes during drying. A total of four harvests were undertaken, and the fruits were ripened at 20 and 35 °C for five different ripening times at each temperature. At each ripening time, mangoes were dried at 60 °C/30% RH/1.5 m/s for 5 h. A wide physico-chemical and color variability of fresh and dry pulp was created. The relationships according to the L*, H* and C* coordinates were established using mixed covariance regression models in relation to the above pre- and postharvest (preprocess) parameters. According to the L* coordinate results, browning during drying was not affected by the preprocess parameters. However, dried slices from mangoes ripened at 35 °C exhibited better retention of the initial chroma, and had a greater decrease in hue than dried slices from mangoes ripened at 20 °C. However, fresh mango color, successfully managed by the pre- and postharvest conditions, had more impact on dried mango color than the studied parameters. The preprocess parameters were effective levers for improving fresh mango color, and consequently dried mango color.

8.
Ann Bot ; 126(4): 745-763, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32391865

ABSTRACT

BACKGROUND AND AIMS: Mango (Mangifera indica L.) is the fifth most widely produced fruit in the world. Its cultivation, mainly in tropical and sub-tropical regions, raises a number of issues such as the irregular fruit production across years, phenological asynchronisms that lead to long periods of pest and disease susceptibility, and the heterogeneity of fruit quality and maturity at harvest. To address these issues, we developed an integrative functional-structural plant model that synthesizes knowledge about the vegetative and reproductive development of the mango tree and opens up the possible simulation of cultivation practices. METHODS: We designed a model of architectural development in order to precisely characterize the intricate developmental processes of the mango tree. The appearance of botanical entities was decomposed into elementary stochastic events describing occurrence, intensity and timing of development. These events were determined by structural (position and fate of botanical entities) and temporal (appearance dates) factors. Daily growth and development of growth units and inflorescences were modelled using empirical distributions and thermal time. Fruit growth was determined using an ecophysiological model that simulated carbon- and water-related processes at the fruiting branch scale. KEY RESULTS: The model simulates the dynamics of the population of growth units, inflorescences and fruits at the tree scale during a growing cycle. Modelling the effects of structural and temporal factors makes it possible to simulate satisfactorily the complex interplays between vegetative and reproductive development. The model allowed the characterization of the susceptibility of mango tree to pests and the investigatation of the influence of tree architecture on fruit growth. CONCLUSIONS: This integrative functional-structural model simulates mango tree vegetative and reproductive development over successive growing cycles, allowing a precise characterization of tree phenology and fruit growth and production. The next step is to integrate the effects of cultivation practices, such as pruning, into the model.


Subject(s)
Mangifera , Animals , Birds , Fruit , Models, Structural , Trees
9.
Toxins (Basel) ; 12(5)2020 05 21.
Article in English | MEDLINE | ID: mdl-32455651

ABSTRACT

The identity of the fungi responsible for fruitlet core rot (FCR) disease in pineapple has been the subject of investigation for some time. This study describes the diversity and toxigenic potential of fungal species causing FCR in La Reunion, an island in the Indian Ocean. One-hundred-and-fifty fungal isolates were obtained from infected and healthy fruitlets on Reunion Island and exclusively correspond to two genera of fungi: Fusarium and Talaromyces. The genus Fusarium made up 79% of the isolates, including 108 F. ananatum, 10 F. oxysporum, and one F. proliferatum. The genus Talaromyces accounted for 21% of the isolated fungi, which were all Talaromyces stollii. As the isolated fungal strains are potentially mycotoxigenic, identification and quantification of mycotoxins were carried out on naturally or artificially infected diseased fruits and under in vitro cultures of potential toxigenic isolates. Fumonisins B1 and B2 (FB1-FB2) and beauvericin (BEA) were found in infected fruitlets of pineapple and in the culture media of Fusarium species. Regarding the induction of mycotoxin in vitro, F.proliferatum produced 182 mg kg⁻1 of FB1 and F. oxysporum produced 192 mg kg⁻1 of BEA. These results provide a better understanding of the causal agents of FCR and their potential risk to pineapple consumers.


Subject(s)
Ananas/microbiology , Fruit/microbiology , Fusarium/isolation & purification , Plant Diseases/microbiology , Talaromyces/isolation & purification , Depsipeptides/metabolism , Fumonisins/metabolism , Fusarium/classification , Fusarium/genetics , Fusarium/metabolism , Hydroxybenzoates/metabolism , Multienzyme Complexes/metabolism , Phylogeny , Talaromyces/classification , Talaromyces/genetics
10.
Front Plant Sci ; 10: 1065, 2019.
Article in English | MEDLINE | ID: mdl-31552069

ABSTRACT

Fruitlet core rot is one of the major postharvest disease of pineapple (Ananas comosus var. comosus). In the past, control strategies were designed to eliminate symptoms without addressing their causes or mechanisms, thus achieving only moderate success. In this study, (i) we focused on the anatomy of the fruitlets in the resistant "MD-2" and susceptible "Queen" pineapple cultivars; (ii) we identified the key role of the carpel margin in the infection process; (iii) we identified the key role of the sinuous layer of thick-walled cells in the inhibition of Fusarium ananatum colonization; and (iv) we linked the anatomy of the fruitlets with the phenolic content of cell walls. The fruitlet anatomy of the two cultivars was studied using X-ray, fluorescence, and multiphoton microscopy. Sepals and bracts were not perfectly fused with each other, allowing the pathogen to penetrate the fruit even after flowering. In fact, the fungi were found in the blossom cups of both cultivars but only became pathogenic in the flesh of the "Queen" pineapple fruit under natural conditions. The outer layer of the "MD-2" cavity was continuous with thick cell walls composed of ferulic and coumaric acids. The cell walls of the "Queen" blossom cup were less lignified at the extremities, and the outer layer was interspersed with cracks. The carpel margins were fused broadly in the "MD-2" pineapple, in contrast to the "Queen" pineapple. This blemish allows the fungus to penetrate deeper into the susceptible cultivar. In pineapple fruitlets, the hyphae of F. ananatum mainly progressed directly between cell walls into the parenchyma but never reached the vascular region. A layer of thick-walled cells, in the case of the resistant cultivar, stopped the colonization, which were probably the infralocular septal nectaries. Anatomical and histochemical observations coupled with spectral analysis of the hypodermis suggested the role of lignin deposition in the resistance to F. ananatum. The major phenolics bound to the cell walls were coumaric and ferulic acids and were found in higher amounts in the resistant cultivar postinoculation. The combination of fruitlet anatomy and lignification plays a role in the mechanism of host resistance to fruitlet core rot.

11.
J Sci Food Agric ; 99(8): 3792-3802, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30666651

ABSTRACT

BACKGROUND: Large improvements have been realized on the accuracy of the determination of fruit quality. The relevance of the relationship between commonly used quality descriptors and their related chemical contents was here questioned under the influence of water supply reduction and postharvest cold storage. The study relied on three analyses: (1) a correlation table between quality descriptors and compound contents, (2) principal component analysis using the selected variables to see the quality discrimination dictated by treatments; and (3) linear correlation between content and descriptors according to treatments. RESULTS: The results indicate that abiotic parameters applied on mango fruits before or after harvest can affect the relationship between a quality descriptor and the content in compounds it is related to, here between titratable acidity and organic acid content and to a lesser extent between color, represented by hue angle values, and carotenoids, possibly creating bias in the final quality determination. A stronger relation between total soluble solids and total sugar content, were observed under mild abiotic stress. CONCLUSION: Fruit growth and postharvest storage conditions, such as irrigation and cold storage, can influence the actual correspondence between the compounds contents and the descriptors used to estimate fruit quality, particularly for pulp color, sugars and acids. © 2019 Society of Chemical Industry.


Subject(s)
Agricultural Irrigation/methods , Food Storage/methods , Fruit/chemistry , Mangifera/growth & development , Water/analysis , Acids/analysis , Carotenoids/analysis , Climacteric , Color , Fruit/growth & development , Fruit/metabolism , Mangifera/chemistry , Mangifera/metabolism , Plant Extracts/analysis , Quality Control , Sugars/analysis , Water/metabolism
12.
Plant Physiol Biochem ; 130: 127-138, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29982169

ABSTRACT

Pineapple (Ananas comosus (L.) Merr.) is a non-climacteric tropical fruit whose ripening could be accompanied by oxidative processes and the concurrent activation of enzymatic and non-enzymatic reactive oxygen species (ROS) scavenging systems. To better understand the variability of these processes among climatic environments or genotypes in pineapple, the temporal expression dynamics for genes encoding oxidative and antioxidative stress enzymes were analyzed by real-time RT-PCR during fruit development and ripening, among three cultivars: Queen Victoria, Flhoran 41 and MD-2 hybrid, and in two climatic areas. Pineapple development and ripening involved changes in the levels of transcripts encoding for polyphenol oxidase and transcripts involved in the first steps of the phenylpropanoid pathway and in the balance of ROS, especially those encoding for ascorbate peroxydase and metallothioneins, regardless of the cultivar. Our results confirm the same dynamic in gene expression from the two environmental crop areas, however climatic conditions influenced the level of the expression of the major transcripts studied that were linked to these oxidative and antioxidant metabolisms. MT3a and MT3b transcripts were not influenced by genetic factor. The genetic effect was not significant on the various transcripts linked to the first steps of the phenylpropanoid pathway and to phenol oxidation, except 4CL ones. In ripe pineapple, highly significant relationships were found between the contents in antioxidant metabolites, i.e., ascorbic acid and total phenolic compounds, and the transcript levels of genes involved in the enzymatic ROS-scavenging system and in the biosynthesis or regeneration of ROS-scavenging compounds, like phenylpropanoids, ascorbic acid, metallothioneins.


Subject(s)
Ananas/genetics , Ananas/metabolism , Ascorbic Acid/metabolism , Fruit/growth & development , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Plant/physiology , Ananas/growth & development , Environment , Genotype , Phenols/metabolism , Reactive Oxygen Species , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
13.
J Plant Physiol ; 224-225: 75-85, 2018.
Article in English | MEDLINE | ID: mdl-29605751

ABSTRACT

The effects of 15 days of storage at 12 °C and 7 °C followed by fruit ripening at 20 °C on oxidative status, antioxidant defense systems and carotenoid accumulation were studied for two successive years in mango fruits (Mangifera indica L.) cv. Cogshall. Changes in the non-enzymatic (ascorbate) and enzymatic (SOD, CAT, APX, MDHAR, DHAR and GR) antioxidant systems, as well as oxidative parameters (H2O2 and MDA) and the contents of the major carotenoids were measured for three maturity stages, at harvest and after ripening following cold temperature storage. In control conditions (20 °C), ripening induced an increase in oxidation resulting in ROS production and a decrease in ascorbate content. Fruit tissue protection was activated by means of antioxidant and ascorbate regeneration enzyme systems. Carotenoid accumulated exponentially during ripening. Storage at low temperatures increased respiration crisis intensity and therefore increased oxidation in the fruit pulp. Fruit response to this increase varied according to the maturity stage, i.e., enzymatic responses in younger fruits were very low in comparison to the control, whereas second harvest fruits had a significantly higher degree of enzymatic activity to cope with the oxidative stress. Carotenoid contents decreased with low temperatures and first harvest fruits showed significantly lower values than the control, in opposition to second harvest fruits that appeared not to be affected. We also suggest that, based on a review of the literature, a link can be made between antioxidant system defense and carotenoid metabolism since ROS seems to play a central role as a stress signal in plants.


Subject(s)
Carotenoids/metabolism , Mangifera/physiology , Oxidative Stress , Reactive Oxygen Species/metabolism , Food Storage , Fruit/enzymology , Fruit/growth & development , Fruit/physiology , Mangifera/enzymology , Mangifera/growth & development , Temperature
14.
Fungal Biol ; 121(12): 1045-1053, 2017 12.
Article in English | MEDLINE | ID: mdl-29122176

ABSTRACT

Fusarium ananatum causes fruitlet core rot (FCR) in pineapple (Ananas comosus var. comosus) when the fruit reaches maturity. Hidden symptoms make it difficult to assess the disease, regardless of its stage, and basic questions concerning the involvement of the phenolic compounds in response to infection remain unknown. A direct inoculation method of F. ananatum in pineapple fruitlets was developed to monitor the growth of black spots and the changes in phenolic acids and ascorbic acid concentration under controlled conditions. After inoculation, infection began with a flesh discolouration at the inoculation point and then spread in a darker shade to form a black spot. Coumaroyl-isocitric and caffeoyl-isocitric acids levels respectively showed a 150- and 200-fold increase in infected fruitlet when compared to healthy fruitlet. These hydroxycinnamic acids increased minimally in the adjacent fruitlet and remained stable in the other parts of the fruit. By contrast, sinapic acid and hydroxybenzoic acid isomers (HBA) decreased after F. ananatum inoculation in the infected fruitlet, whereas they remained stable in the adjacent and healthy fruitlets. Ascorbic acid decreased to zero in the infected fruitlet. The antifungal activity of phenolic compounds and ascorbic acid was evaluated against the mycelial growth of F. ananatum. p-Coumaric acid exhibited a total inhibition of the mycelial growth at 1000 µg g-1. Ferulic acid inhibited 64 % of mycelial growth at a concentration of 1000 µg g-1. Caffeoylquinic acid, sinapic acid, and ascorbic acid also showed significant antifungal activity, but to a lesser extent. Finally, coinoculation of the hydroxycinnamic acids with the pathogen restrains its development in the fruit. This is the first study to highlight the involvement of phenolic compounds in the pineapple FCR disease.


Subject(s)
Ananas/metabolism , Ananas/microbiology , Antifungal Agents/analysis , Fusarium/growth & development , Phenols/analysis , Phytochemicals/analysis , Plant Diseases/microbiology , Ascorbic Acid/analysis , Fruit/metabolism , Fruit/microbiology
15.
J Plant Physiol ; 196-197: 70-8, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27085177

ABSTRACT

Ripening of climacteric fruits is associated with pronounced changes in fruit gas composition caused by a concomitant rise in respiration and ethylene production. There is a discrepancy in the literature since some authors reported that changes in fruit gas compositions differ in attached and detached fruits. This study presents for the first time an overview of pre- and post-harvest factors that lead to variations in the climacteric respiration and ethylene production, and attempts to determine their impacts on fruit composition, i.e., dry matter, total soluble solids content and acidity. The impact of growing conditions such as the fruit position in the canopy and the fruit carbon supply; fruit detachment from the tree, including the maturity stage at harvest; and storage conditions after harvest, i.e., relative humidity and temperature were considered as well as changes in fruit skin resistance to gas diffusion during fruit growth and storage. Results showed that fruit gas composition vary with all pre and post-harvest factors studied. Although all mangoes underwent a respiratory climacteric and an autocatalytic ethylene production, whatever pre and post-harvest factors studied, large differences in ethylene production, climacteric respiration and fruit quality were measured. Results suggested that the ripening capacity is not related to the fruit ability to produce great amount of ethylene. In agreement with precedent studies, this work provided several lines of evidence that gas composition of fruit is related to its water balance. Our measurements indicated that skin resistance to gas diffusion increased after the harvest and during storage. It was so suggested that the faster ripening of detached fruit may be explained in part by changes in fruit water balance and skin resistance to gas diffusion caused by fruit detachment.


Subject(s)
Mangifera/metabolism , Carbon Dioxide/metabolism , Ethylenes/metabolism , Fruit/chemistry , Fruit/growth & development , Fruit/metabolism , Mangifera/chemistry , Mangifera/growth & development
17.
J Plant Physiol ; 184: 68-78, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26232564

ABSTRACT

The effects of a reduction in water supply during fruit development and postharvest fruit ripening on the oxidative status and the antioxidant defense system were studied in the mango fruit (Mangifera indica L.) cv. Cogshall. Changes in non-enzymatic (ascorbate) and enzymatic (SOD, CAT, APX, MDHAR, DHAR and GR) antioxidants, as well as oxidative parameters (H2O2 and MDA) and major carotenoids, were measured in unripe and ripe fruits from well-irrigated and non-irrigated trees. Under non-limiting water supply conditions, ripening induced oxidation as a result of the production of ROS and decreased ascorbate content. Antioxidant enzymatic systems were activated to protect fruit tissues and to regenerate the ascorbate pool. The carotenoid pool, mainly represented by ß-carotene and esterified violaxanthine isomers, accumulated naturally during mango ripening. The suppression of irrigation decreased fruit size and induced accumulation of ABA and of its storage form, ABA-GE, in fruit pulp from the earliest harvest. It also increased oxidation, which was observable by the high levels of ascorbate measured at the early stages at harvest, and by the delay in the time it took to reach the pseudo constant carotene-to-xanthophyll ratio in ripe fruits. Nevertheless, differences between the irrigation treatments on the antioxidant system in ripe fruits were not significant, mainly because of the drastic changes in this system during ripening.


Subject(s)
Antioxidants/metabolism , Carotenoids/metabolism , Mangifera/metabolism , Oxidative Stress , Water/metabolism , Agricultural Irrigation , Fruit/enzymology , Fruit/growth & development , Fruit/metabolism , Mangifera/enzymology
18.
Funct Plant Biol ; 42(7): 668-675, 2015 Jun.
Article in English | MEDLINE | ID: mdl-32480710

ABSTRACT

The decline in xylem flow during the late growth stage in most fruits may be due either to a decrease in the water potential gradient between the stem bearing the fruit and the fruit tissues or to a decrease in the hydraulic conductivity of xylem vessels, or both. In this study, we analysed changes in xylem flows to the mango Mangifera indica L. fruit during its development to identify the sources of variation by measuring changes in the water potential gradient and in the hydraulic properties of the fruit pedicel. The variations in xylem and transpiration flows were estimated at several stages of mango fruit development from the daily changes in the fresh mass of detached and girdled fruits on branches. The water potential gradient was estimated by monitoring the diurnal water potential in the stem and fruit. The hydraulic properties of the fruit pedicel were estimated using a flow meter. The results indicated that xylem flow increased in the early stages of fruit development and decreased in the late stage. Variations in xylem flow were related to the decrease in the hydraulic conductivity of xylem vessels but not to a decrease in the water potential gradient. The hydraulic conductivity of the fruit pedicel decreased during late growth due to embolism caused by a decrease in the fruit water potential. Further studies should establish the impact of the decrease in the hydraulic conductivity of the fruit pedicel on mango growth.

19.
J Plant Physiol ; 171(17): 1555-63, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25151123

ABSTRACT

Managing fruit quality is complex because many different attributes have to be taken into account, which are themselves subjected to spatial and temporal variations. Heterogeneous fruit quality has been assumed to be partly related to temperature and maturity gradients within the fruit. To test this assumption, we measured the spatial variability of certain mango fruit quality traits: colour of the peel and of the flesh, and sourness and sweetness, at different stages of fruit maturity using destructive methods as well as vis-NIR reflectance. The spatial variability of mango quality traits was compared to internal variations in thermal time, simulated by a physical model, and to internal variations in maturity, using ethylene content as an indicator. All the fruit quality indicators analysed showed significant spatial and temporal variations, regardless of the measurement method used. The heterogeneity of internal fruit quality traits was not correlated with the marked internal temperature gradient we modelled. However, variations in ethylene content revealed a strong internal maturity gradient which was correlated with the spatial variations in measured mango quality traits. Nonetheless, alone, the internal maturity gradient did not explain the variability of fruit quality traits, suggesting that other factors, such as gas, abscisic acid and water gradients, are also involved.


Subject(s)
Ethylenes/metabolism , Fruit/physiology , Mangifera/physiology , Plant Growth Regulators/metabolism , Color , Ethylenes/analysis , Fruit/chemistry , Fruit/growth & development , Mangifera/chemistry , Mangifera/growth & development , Models, Biological , Organ Specificity , Phenotype , Plant Growth Regulators/analysis , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/physiology , Temperature
20.
PLoS One ; 9(3): e92532, 2014.
Article in English | MEDLINE | ID: mdl-24663687

ABSTRACT

Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.


Subject(s)
Fruit/growth & development , Models, Biological , Plant Transpiration , Temperature , Fruit/physiology , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...