Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Struct Mol Biol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844527

ABSTRACT

The ribosomal RNA of the human protein synthesis machinery comprises numerous chemical modifications that are introduced during ribosome biogenesis. Here we present the 1.9 Å resolution cryo electron microscopy structure of the 80S human ribosome resolving numerous new ribosomal RNA modifications and functionally important ions such as Zn2+, K+ and Mg2+, including their associated individual water molecules. The 2'-O-methylation, pseudo-uridine and base modifications were confirmed by mass spectrometry, resulting in a complete investigation of the >230 sites, many of which could not be addressed previously. They choreograph key interactions within the RNA and at the interface with proteins, including at the ribosomal subunit interfaces of the fully assembled 80S ribosome. Uridine isomerization turns out to be a key mechanism for U-A base pair stabilization in RNA in general. The structural environment of chemical modifications and ions is primordial for the RNA architecture of the mature human ribosome, hence providing a structural framework to address their role in healthy states and in human diseases.

2.
Methods Mol Biol ; 2741: 273-287, 2024.
Article in English | MEDLINE | ID: mdl-38217659

ABSTRACT

Regulatory RNAs, as well as many RNA families, contain chemically modified nucleotides, including pseudouridines (ψ). To map nucleotide modifications, approaches based on enzymatic digestion of RNA followed by nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis were implemented several years ago. However, detection of ψ by mass spectrometry (MS) is challenging as ψ exhibits the same mass as uridine. Thus, a chemical labeling strategy using acrylonitrile was developed to detect this mass-silent modification. Acrylonitrile reacts specifically to ψ to form 1-cyanoethylpseudouridine (Ceψ), resulting in a mass shift of ψ detectable by MS. Here, a protocol detailing the steps from the purification of RNA by polyacrylamide gel electrophoresis, including in-gel labeling of ψ, to MS data interpretation to map ψ and other modifications is proposed. To demonstrate its efficiency, the protocol was applied to bacterial regulatory RNAs from E. coli: 6S RNA and transfer-messenger RNA (tmRNA, also known as 10Sa RNA). Moreover, ribonuclease P (RNase P) was also mapped using this approach. This method enabled the detection of several ψ at single nucleotide resolution.


Subject(s)
Acrylonitrile , Pseudouridine , Humans , Pseudouridine/genetics , Tandem Mass Spectrometry , Escherichia coli/genetics , Escherichia coli/metabolism , RNA , RNA, Bacterial/metabolism , Nucleotides , RNA Processing, Post-Transcriptional , RNA, Transfer/genetics
3.
Nucleic Acids Res ; 52(D1): D239-D244, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38015436

ABSTRACT

The MODOMICS database was updated with recent data and now includes new data types related to RNA modifications. Changes to the database include an expanded modification catalog, encompassing both natural and synthetic residues identified in RNA structures. This addition aids in representing RNA sequences from the RCSB PDB database more effectively. To manage the increased number of modifications, adjustments to the nomenclature system were made. Updates in the RNA sequences section include the addition of new sequences and the reintroduction of sequence alignments for tRNAs and rRNAs. The protein section was updated and connected to structures from the RCSB PDB database and predictions by AlphaFold. MODOMICS now includes a data annotation system, with 'Evidence' and 'Estimated Reliability' features, offering clarity on data support and accuracy. This system is open to all MODOMICS entries, enhancing the accuracy of RNA modification data representation. MODOMICS is available at https://iimcb.genesilico.pl/modomics/.


Subject(s)
Databases, Nucleic Acid , RNA , Databases, Protein , RNA/chemistry , RNA/genetics , Internet , Sequence Analysis, RNA , User-Computer Interface
4.
RNA ; 30(2): 105-112, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38071475

ABSTRACT

Ribosomal RNA contains many posttranscriptionally modified nucleosides, particularly in the functional parts of the ribosome. The distribution of these modifications varies from one organism to another. In Bacillus subtilis, the model organism for Gram-positive bacteria, mass spectrometry experiments revealed the presence of 7-methylguanosine (m7G) at position 2574 of the 23S rRNA, which lies in the A-site of the peptidyl transferase center of the large ribosomal subunit. Testing several m7G methyltransferase candidates allowed us to identify the RlmQ enzyme, encoded by the ywbD open reading frame, as the MTase responsible for this modification. The enzyme methylates free RNA and not ribosomal 50S or 70S particles, suggesting that modification occurs in the early steps of ribosome biogenesis.


Subject(s)
Peptidyl Transferases , Peptidyl Transferases/genetics , RNA, Ribosomal, 23S/genetics , RNA, Ribosomal, 23S/chemistry , Bacillus subtilis/genetics , RNA/chemistry , Methyltransferases/genetics
6.
RNA ; 29(5): 551-556, 2023 05.
Article in English | MEDLINE | ID: mdl-36759127

ABSTRACT

Analysis of the profile of the tRNA modifications in several Archaea allowed us to observe a novel modified uridine in the V-loop of several tRNAs from two species: Pyrococcus furiosus and Sulfolobus acidocaldarius Recently, Ohira and colleagues characterized 2'-phosphouridine (Up) at position 47 in tRNAs of thermophilic Sulfurisphaera tokodaii, as well as in several other archaea and thermophilic bacteria. From the presence of the gene arkI corresponding to the RNA kinase responsible for Up47 formation, they also concluded that Up47 should be present in tRNAs of other thermophilic Archaea Reanalysis of our earlier data confirms that the unidentified residue in tRNAs of both P. furiosus and S. acidocaldarius is indeed 2'-phosphouridine followed by m5C48. Moreover, we find this modification in several tRNAs of other Archaea and of the hyperthermophilic bacterium Aquifex aeolicus.


Subject(s)
Archaea , Sulfolobus , Archaea/genetics , Bacteria/genetics , Sulfolobus/genetics
7.
Anal Chem ; 95(2): 1608-1617, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36598775

ABSTRACT

As RNA post-transcriptional modifications are of growing interest, several methods were developed for their characterization. One of them established for their identification, at the nucleosidic level, is the hyphenation of separation methods, such as liquid chromatography or capillary electrophoresis, to tandem mass spectrometry. However, to our knowledge, no software is yet available for the untargeted identification of RNA post-transcriptional modifications from MS/MS data-dependent acquisitions. Thus, very long and tedious manual data interpretations are required. To meet the need of easier and faster data interpretation, a new user-friendly search engine, called Nucleos'ID, was developed for CE-MS/MS and LC-MS/MS users. Performances of this new software were evaluated on CE-MS/MS data from nucleoside analyses of already well-described Saccharomyces cerevisiae transfer RNA and Bos taurus total tRNA extract. All samples showed great true positive, true negative, and false discovery rates considering the database size containing all modified and unmodified nucleosides referenced in the literature. The true positive and true negative rates obtained were above 0.94, while the false discovery rates were between 0.09 and 0.17. To increase the level of sample complexity, untargeted identification of several RNA modifications from Pseudomonas aeruginosa 70S ribosome was achieved by the Nucleos'ID search following CE-MS/MS analysis.


Subject(s)
Nucleosides , Tandem Mass Spectrometry , Animals , Cattle , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Nucleosides/analysis , Search Engine , RNA, Transfer
8.
Article in English | MEDLINE | ID: mdl-35917777

ABSTRACT

As part of RNA characterization, the identification of post-transcriptional modifications can be performed using hyphenation of separation methods with mass spectrometry. To identify RNA modifications with those methods, a first total digestion followed by a dephosphorylation step are usually required to reduce RNA to nucleosides. Even though effective digestion and dephosphorylation are essential to avoid further complications in analysis and data interpretation, to our knowledge, no standard protocol is yet referenced in the literature. Therefore, the aim of this work is to optimize the dephosphorylation step using a total extract of transfer RNA (tRNA)1 from B. taurus as a model and to determine and fix two protocols, leading to complete dephosphorylation, based on time and bacterial alkaline phosphatase (BAP)2 consumptions. Capillary electrophoresis-tandem mass spectrometry (CE-MS/MS) was used to estimate the dephosphorylation efficiency of both protocols on many canonical and modified nucleotides. For a timesaving protocol, we established that full dephosphorylation was obtained after a 4-hour incubation at 37 °C with 7.5 U of BAP for 1 µg of tRNA. And for a BAP-saving protocol, we established that full dephosphorylation was obtained 3.0 U of BAP after an overnight incubation at 37 °C. Both protocols are suitable for quantitative analyses as no loss of analytes is expected. Moreover, they can be widely used for all other RNA classes, including messenger RNA or ribosomal RNA.


Subject(s)
RNA , Tandem Mass Spectrometry , Nucleosides/analysis , Nucleotides , RNA/chemistry , RNA, Transfer , Tandem Mass Spectrometry/methods
9.
Methods Mol Biol ; 2271: 97-106, 2021.
Article in English | MEDLINE | ID: mdl-33908002

ABSTRACT

Glycosylation is a crucial posttranslational modification (PTM) that might affect the safety and efficacy of monoclonal antibodies (mAbs). Capillary electrophoresis-mass spectrometry (CE-MS) enables the characterization of the primary structure of mAbs. A bottom-up proteomic workflow is designed to provide detailed information about the glycosylation. In this chapter, we describe the validated experimental protocol applied for the characterization and relative quantification of mAbs N-glycosylation at the glycopeptide level.


Subject(s)
Electrophoresis, Capillary , Glycoproteins/analysis , Natalizumab/analysis , Protein Processing, Post-Translational , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Glycosylation , Research Design , Workflow
10.
Anal Chem ; 92(20): 14103-14112, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32961048

ABSTRACT

Capillary zone electrophoresis-mass spectrometry (CE-MS) is a mature analytical tool for the efficient profiling of (highly) polar and ionizable compounds. However, the use of CE-MS in comparison to other separation techniques remains underrepresented in metabolomics, as this analytical approach is still perceived as technically challenging and less reproducible, notably for migration time. The latter is key for a reliable comparison of metabolic profiles and for unknown biomarker identification that is complementary to high resolution MS/MS. In this work, we present the results of a Metabo-ring trial involving 16 CE-MS platforms among 13 different laboratories spanning two continents. The goal was to assess the reproducibility and identification capability of CE-MS by employing effective electrophoretic mobility (µeff) as the key parameter in comparison to the relative migration time (RMT) approach. For this purpose, a representative cationic metabolite mixture in water, pretreated human plasma, and urine samples spiked with the same metabolite mixture were used and distributed for analysis by all laboratories. The µeff was determined for all metabolites spiked into each sample. The background electrolyte (BGE) was prepared and employed by each participating lab following the same protocol. All other parameters (capillary, interface, injection volume, voltage ramp, temperature, capillary conditioning, and rinsing procedure, etc.) were left to the discretion of the contributing laboratories. The results revealed that the reproducibility of the µeff for 20 out of the 21 model compounds was below 3.1% vs 10.9% for RMT, regardless of the huge heterogeneity in experimental conditions and platforms across the 13 laboratories. Overall, this Metabo-ring trial demonstrated that CE-MS is a viable and reproducible approach for metabolomics.


Subject(s)
Electrophoresis, Capillary/methods , Organic Chemicals/blood , Organic Chemicals/urine , Tandem Mass Spectrometry/methods , Cations/chemistry , Databases, Chemical , Electrolytes/chemistry , Humans , Metabolome , Metabolomics , Reproducibility of Results
11.
Anal Chem ; 92(10): 7363-7370, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32343557

ABSTRACT

Over the past decade there has been a growing interest in RNA modification analysis. High performance liquid chromatography-tandem mass spectrometry coupling (HPLC-MS/MS) is classically used to characterize post-transcriptional modifications of ribonucleic acids (RNAs). Here we propose a novel and simple workflow based on capillary zone electrophoresis-tandem mass spectrometry (CE-MS/MS), in positive mode, to characterize RNA modifications at nucleoside and oligonucleotide levels. By first totally digesting the purified RNA, prior to CE-MS/MS analysis, we were able to identify the nucleoside modifications. Then, using a bottom-up approach, sequencing of the RNAs and mapping of the modifications were performed. Sequence coverages from 68% to 97% were obtained for four tRNAs. Furthermore, unambiguous identification and mapping of several modifications were achieved.


Subject(s)
RNA, Transfer/metabolism , Saccharomyces cerevisiae/chemistry , Chromatography, High Pressure Liquid , Electrophoresis, Capillary , RNA Processing, Post-Transcriptional , RNA, Transfer/chemistry , RNA, Transfer/isolation & purification , Tandem Mass Spectrometry
12.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1122-1123: 1-17, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31128359

ABSTRACT

Monoclonal antibodies (mAbs) and their related products as antibody-drug-conjugates (ADCs) or biosimilars represent a constantly growing class of molecules therapeutic proteins used as treatment against numerous diseases. These compounds can undergo several modifications which could alter the efficiency of treatments. In this context, several analytical methods were designed to deliver a comprehensive structural characterization and guarantee the quality of biotherapeutics. Capillary electrophoresis (CE) is considered today as a major technique for the analysis of biotherapeutics due to benefic characteristics as high resolution separation and miniaturized format. Different CE modes have been developed to characterize mAbs at different levels such as capillary gel electrophoresis (CGE), capillary isoelectric focusing (cIEF), and capillary zone electrophoresis (CZE). Recent developments in CE-mass spectrometry (MS) coupling assessed this technology as a promising tool to obtain high level structural characterization of biopharmaceuticals. Moreover, upcoming techniques such as 2D CE-MS and microfluidic systems are now emerging to offer new possibilities beyond actual limits. This review will be dedicated to discuss the state-of-the-art CE-based methods for the characterization of mAbs and ADCs in the period 2016-2018.


Subject(s)
Antibodies, Monoclonal , Electrophoresis, Capillary , Immunoconjugates , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Humans , Immunoconjugates/analysis , Immunoconjugates/chemistry , Immunoconjugates/isolation & purification , Isoelectric Focusing , Mass Spectrometry
13.
Eur J Mass Spectrom (Chichester) ; 25(3): 324-332, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30351978

ABSTRACT

Capillary electrophoresis-mass spectrometry coupling is a growing technique in biopharmaceutics characterization. Assessment of monoclonal antibodies is well known at middle-up and bottom-up levels to obtain information about the sequence, post-translational modifications and degradation products. Intact protein analysis is an actual challenge to be closer to the real protein structure. At this level, actual techniques are time consuming or cumbersome processes. In this work, a 20 minutes separation method has been developed to optimize characterization of intact monoclonal antibodies. Thus, separation has been done on a positively charged coated capillary with optimized volatile background electrolyte and sample buffer. Three world-wide health authorities approved monoclonal antibodies have been used to set up a rapid and ease of use method. Intact trastuzumab, rituximab and palivizumab isoforms have been partially separated with this method in less than 20 minutes under denaturing conditions. For each monoclonal antibody, 2X-glycosylated and 1X-glycosylated structures have been identified and separated. Concerning basic and acidic variants, potential aspartic acid isomerization modification and asparagine deamidation have been observed. Accurate mass determination for high-mass molecular species remains a challenge, but the progress in intact monoclonal antibodies separation appears very promising for biopharmaceutics characterization.


Subject(s)
Electrophoresis, Capillary/methods , Mass Spectrometry/methods , Trastuzumab/chemistry , Glycosylation , Isomerism , Protein Processing, Post-Translational , Trastuzumab/isolation & purification
14.
Talanta ; 178: 530-537, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29136858

ABSTRACT

Characterization of therapeutic proteins represents a major challenge for analytical sciences due to their heterogeneity caused by post-translational modifications (PTM). Among these PTM, glycosylation which is possibly the most prominent, require comprehensive identification because of their major influence on protein structure and effector functions of monoclonal antibodies (mAbs). As a consequence, glycosylation profiling must be deeply characterized. For this application, several analytical methods such as separation-based or MS-based methods, were evaluated. However, no CE-ESI-MS approach has been assessed and validated. Here, we illustrate how the use of CE-ESI-MS method permits the comprehensive characterization of mAbs N-glycosylation at the glycopeptide level to perform relative quantitation of N-glycan species. Validation of the CE-ESI-MS method in terms of robustness and reproducibility was demonstrated through the relative quantitation of glycosylation profiles for ten different mAbs produced in different cell lines. Glycosylation patterns obtained for each mAbs were compared to Hydrophilic Interaction Chromatography of 2-aminobenzamide labelled glycans with fluorescence detector (HILIC-FD) analysis considered as a reference method. Very similar glycoprofiling were obtained with the CE-ESI-MS and HILIC-FD demonstrating the attractiveness of CE-ESI-MS method to characterize and quantify the glycosylation heterogeneity of a wide range of therapeutic mAbs with high accuracy and precision.


Subject(s)
Antibodies, Monoclonal/chemistry , Glycopeptides/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography/methods , Electrophoresis, Capillary/methods , Glycosylation , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...