Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Front Endocrinol (Lausanne) ; 14: 1171933, 2023.
Article in English | MEDLINE | ID: mdl-37396167

ABSTRACT

Introduction: Common variants in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8 (expressed largely in pancreatic islet alpha and beta cells), are associated with altered risk of type 2 diabetes. Unexpectedly, rare loss-of-function (LoF) variants in the gene, described in heterozygous individuals only, are protective against the disease, even though knockout of the homologous SLC30A8 gene in mice leads to unchanged or impaired glucose tolerance. Here, we aimed to determine how one or two copies of the mutant R138X allele in the mouse SLC30A8 gene impacts the homeostasis of zinc at a whole-body (using non-invasive 62Zn PET imaging to assess the acute dynamics of zinc handling) and tissue/cell level [using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to map the long-term distribution of zinc and manganese in the pancreas]. Methods: Following intravenous administration of [62Zn]Zn-citrate (~7 MBq, 150 µl) in wild-type (WT), heterozygous (R138X+/-), and homozygous (R138X+/+) mutant mice (14-15 weeks old, n = 4 per genotype), zinc dynamics were measured over 60 min using PET. Histological, islet hormone immunohistochemistry, and elemental analysis with LA-ICP-MS (Zn, Mn, P) were performed on sequential pancreas sections. Bulk Zn and Mn concentration in the pancreas was determined by solution ICP-MS. Results: Our findings reveal that whereas uptake into organs, assessed using PET imaging of 62Zn, is largely unaffected by the R138X variant, mice homozygous of the mutant allele show a substantial lowering (to 40% of WT) of total islet zinc, as anticipated. In contrast, mice heterozygous for this allele, thus mimicking human carriers of LoF alleles, show markedly increased endocrine and exocrine zinc content (1.6-fold increase for both compared to WT), as measured by LA-ICP-MS. Both endocrine and exocrine manganese contents were also sharply increased in R138X+/- mice, with smaller increases observed in R138X+/+ mice. Discussion: These data challenge the view that zinc depletion from the beta cell is the likely underlying driver for protection from type 2 diabetes development in carriers of LoF alleles. Instead, they suggest that heterozygous LoF may paradoxically increase pancreatic ß-cell zinc and manganese content and impact the levels of these metals in the exocrine pancreas to improve insulin secretion.


Subject(s)
Cation Transport Proteins , Diabetes Mellitus, Type 2 , Animals , Humans , Mice , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Manganese/metabolism , Pancreas/diagnostic imaging , Pancreas/metabolism , Pancreatic Hormones/metabolism , Positron-Emission Tomography , Zinc/metabolism , Zinc Transporter 8/genetics
2.
Nat Commun ; 14(1): 2533, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37137910

ABSTRACT

We identify biomarkers for disease progression in three type 2 diabetes cohorts encompassing 2,973 individuals across three molecular classes, metabolites, lipids and proteins. Homocitrulline, isoleucine and 2-aminoadipic acid, eight triacylglycerol species, and lowered sphingomyelin 42:2;2 levels are predictive of faster progression towards insulin requirement. Of ~1,300 proteins examined in two cohorts, levels of GDF15/MIC-1, IL-18Ra, CRELD1, NogoR, FAS, and ENPP7 are associated with faster progression, whilst SMAC/DIABLO, SPOCK1 and HEMK2 predict lower progression rates. In an external replication, proteins and lipids are associated with diabetes incidence and prevalence. NogoR/RTN4R injection improved glucose tolerance in high fat-fed male mice but impaired it in male db/db mice. High NogoR levels led to islet cell apoptosis, and IL-18R antagonised inflammatory IL-18 signalling towards nuclear factor kappa-B in vitro. This comprehensive, multi-disciplinary approach thus identifies biomarkers with potential prognostic utility, provides evidence for possible disease mechanisms, and identifies potential therapeutic avenues to slow diabetes progression.


Subject(s)
Diabetes Mellitus, Type 2 , Islets of Langerhans , Mice , Animals , Male , Diabetes Mellitus, Type 2/metabolism , Blood Glucose/metabolism , Islets of Langerhans/metabolism , Insulin/metabolism , Lipids , Biomarkers/metabolism , Cell Adhesion Molecules/metabolism , Extracellular Matrix Proteins/metabolism
3.
Can Fam Physician ; 69(3): e52-e60, 2023 03.
Article in English | MEDLINE | ID: mdl-36944526

ABSTRACT

PROBLEM ADDRESSED: Chronic noncancer pain is often excessively managed with medications (most notably opioids) instead of nonpharmacologic options or multidisciplinary care-the gold standards. OBJECTIVE OF PROGRAM: To offer an effective alternative to pharmacologic management of chronic noncancer pain in primary care. PROGRAM DESCRIPTION: Patients 18 years of age or older with chronic noncancer pain were referred by family physicians or nurse practitioners in a family health team (outpatient, multidisciplinary clinic) in Ottawa, Ont. A registered nurse used the Pain Explanation and Treatment Diagram with patients, taught self-management skills (related to habits [smoking, consumption of alcohol, diet], exercise, sleep, ergonomics, and psychosocial factors), and referred patients to relevant resources. CONCLUSION: A nurse-led chronic pain program, initiated without extra funding, was successfully integrated into a primary care setting. Among the participating patients in the pilot project, outcomes related to pain intensity, pain interference with daily living, and opioid use were encouraging. This program could serve as a model for improving chronic noncancer pain management in primary care.


Subject(s)
Chronic Pain , Humans , Adolescent , Adult , Chronic Pain/drug therapy , Analgesics, Opioid/therapeutic use , Pilot Projects , Nurse's Role , Primary Health Care
4.
Life Sci ; 316: 121436, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36706832

ABSTRACT

AIMS: Spatially-organized increases in cytosolic Ca2+ within pancreatic beta cells in the pancreatic islet underlie the stimulation of insulin secretion by high glucose. Recent data have revealed the existence of subpopulations of beta cells including "leaders" which initiate Ca2+ waves. Whether leader cells possess unique molecular features, or localisation, is unknown. MAIN METHODS: High speed confocal Ca2+ imaging was used to identify leader cells and connectivity analysis, running under MATLAB and Python, to identify highly connected "hub" cells. To explore transcriptomic differences between beta cell sub-groups, individual leaders or followers were labelled by photo-activation of the cryptic fluorescent protein PA-mCherry and subjected to single cell RNA sequencing ("Flash-Seq"). KEY FINDINGS: Distinct Ca2+ wave types were identified in individual islets, with leader cells present in 73 % (28 of 38 islets imaged). Scale-free, power law-adherent behaviour was also observed in 29 % of islets, though "hub" cells in these islets did not overlap with leaders. Transcripts differentially expressed (295; padj < 0.05) between leader and follower cells included genes involved in cilium biogenesis and transcriptional regulation. Providing some support for these findings, ADCY6 immunoreactivity tended to be higher in leader than follower cells, whereas cilia number and length tended to be lower in the former. Finally, leader cells were located significantly closer to delta, but not alpha, cells in Euclidian space than were follower cells. SIGNIFICANCE: The existence of both a discrete transcriptome and unique localisation implies a role for these features in defining the specialized function of leaders. These data also raise the possibility that localised signalling between delta and leader cells contributes to the initiation and propagation of islet Ca2+ waves.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Insulin Secretion , Gene Expression Regulation , Cell Line , Insulin/metabolism , Glucose/metabolism
5.
Front Endocrinol (Lausanne) ; 13: 1020576, 2022.
Article in English | MEDLINE | ID: mdl-36246869

ABSTRACT

Objectives: Glucocorticoids produced by the adrenal cortex are essential for the maintenance of metabolic homeostasis. Glucocorticoid activation is catalysed by 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1). Excess glucocorticoids are associated with insulin resistance and hyperglycaemia. A small number of studies have demonstrated effects on glucocorticoid metabolism of bariatric surgery, a group of gastrointestinal procedures known to improve insulin sensitivity and secretion, which were assumed to result from weight loss. In this study, we hypothesize that a reduction in glucocorticoid action following bariatric surgery contributes to the widely observed euglycemic effects of the treatment. Methods: Glucose and insulin tolerance tests were performed at ten weeks post operatively and circulating corticosterone was measured. Liver and adipose tissues were harvested from fed mice and 11ß-HSD1 levels were measured by quantitative RT-PCR or Western (immuno-) blotting, respectively. 11ß-HSD1 null mice (Hsd11b1 -/-) were generated using CRISPR/Cas9 genome editing. Wild type and littermate Hsd11b1 -/- mice underwent Vertical Sleeve Gastrectomy (VSG) or sham surgery. Results: Under the conditions used, no differences in weight loss were observed between VSG treated and sham operated mice. However, both lean and obese WT VSG mice displayed significantly improved glucose clearance and insulin sensitivity. Remarkably, VSG restored physiological corticosterone production in HFD mice and reduced 11ß-HSD1 expression in liver and adipose tissue post-surgery. Elimination of the 11ß-HSD1/Hsd11b1 gene by CRISPR/Cas9 mimicked the effects of VSG on body weight and tolerance to 1g/kg glucose challenge. However, at higher glucose loads, the euglycemic effect of VSG was superior to Hsd11b1 elimination. Conclusions: Bariatric surgery improves insulin sensitivity and reduces glucocorticoid activation at the tissular level, under physiological and pathophysiological (obesity) conditions, irrespective of weight loss. These findings point towards a physiologically relevant gut-glucocorticoid axis, and suggest that lowered glucocorticoid exposure may represent an additional contribution to the health benefits of bariatric surgery.


Subject(s)
Gastrectomy , Glucocorticoids , Insulin Resistance , Insulins , Animals , Mice , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Corticosterone , Glucocorticoids/blood , Glucose , Mice, Obese , Weight Loss
6.
Diabetes Obes Metab ; 24(11): 2090-2101, 2022 11.
Article in English | MEDLINE | ID: mdl-35676825

ABSTRACT

AIMS: To describe the in vitro characteristics and antidiabetic in vivo efficacy of the novel glucagon-like peptide-1 receptor agonist (GLP-1RA) GL0034. MATERIALS AND METHODS: Glucagon-like peptide-1 receptor (GLP-1R) kinetic binding parameters, cyclic adenosine monophosphate (cAMP) signalling, endocytosis and recycling were measured using HEK293 and INS-1832/3 cells expressing human GLP-1R. Insulin secretion was measured in vitro using INS-1832/3 cells, mouse islets and human islets. Chronic administration studies to evaluate weight loss and glycaemic effects were performed in db/db and diet-induced obese mice. RESULTS: Compared to the leading GLP-1RA semaglutide, GL0034 showed increased binding affinity and potency-driven bias in favour of cAMP over GLP-1R endocytosis and ß-arrestin-2 recruitment. Insulin secretory responses were similar for both ligands. GL0034 (6 nmol/kg) led to at least as much weight loss and lowering of blood glucose as did semaglutide at a higher dose (14 nmol/kg). CONCLUSIONS: GL0034 is a G protein-biased agonist that shows powerful antidiabetic effects in mice, and may serve as a promising new GLP-1RA for obese patients with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulins , Adenosine Monophosphate , Animals , Blood Glucose , Cyclic AMP/metabolism , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , HEK293 Cells , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Ligands , Mice , Weight Loss , beta-Arrestins/metabolism
8.
Diabetes ; 71(8): 1623-1635, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35594379

ABSTRACT

Bariatric surgery improves glucose homeostasis, but the underlying mechanisms are not fully elucidated. Here, we show that the expression of sodium-glucose cotransporter 2 (SGLT2/Slc5a2) is reduced in the kidney of lean and obese mice following vertical sleeve gastrectomy (VSG). Indicating an important contribution of altered cotransporter expression to the impact of surgery, inactivation of the SGLT2/Slc5a2 gene by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 attenuated the effects of VSG, with glucose excursions following intraperitoneal injection lowered by ∼30% in wild-type mice but by ∼20% in SGLT2-null animals. The effects of the SGLT2 inhibitor dapaglifozin were similarly blunted by surgery. Unexpectedly, effects of dapaglifozin were still observed in SGLT2-null mice, consistent with the existence of metabolically beneficial off-target effects of SGLT2 inhibitors. Thus, we describe a new mechanism involved in mediating the glucose-lowering effects of bariatric surgery.


Subject(s)
Blood Glucose , Insulin-Secreting Cells , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Glucose Transporter 2/metabolism , Animals , Blood Glucose/metabolism , Gastrectomy , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Kidney/metabolism , Mice , Mice, Knockout , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
9.
Diabetes ; 71(7): 1472-1489, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35472764

ABSTRACT

Mitochondrial glucose metabolism is essential for stimulated insulin release from pancreatic ß-cells. Whether mitofusin gene expression, and hence, mitochondrial network integrity, is important for glucose or incretin signaling has not previously been explored. Here, we generated mice with ß-cell-selective, adult-restricted deletion knock-out (dKO) of the mitofusin genes Mfn1 and Mfn2 (ßMfn1/2 dKO). ßMfn1/2-dKO mice displayed elevated fed and fasted glycemia and a more than fivefold decrease in plasma insulin. Mitochondrial length, glucose-induced polarization, ATP synthesis, and cytosolic and mitochondrial Ca2+ increases were all reduced in dKO islets. In contrast, oral glucose tolerance was more modestly affected in ßMfn1/2-dKO mice, and glucagon-like peptide 1 or glucose-dependent insulinotropic peptide receptor agonists largely corrected defective glucose-stimulated insulin secretion through enhanced EPAC-dependent signaling. Correspondingly, cAMP increases in the cytosol, as measured with an Epac-camps-based sensor, were exaggerated in dKO mice. Mitochondrial fusion and fission cycles are thus essential in the ß-cell to maintain normal glucose, but not incretin, sensing. These findings broaden our understanding of the roles of mitofusins in ß-cells, the potential contributions of altered mitochondrial dynamics to diabetes development, and the impact of incretins on this process.


Subject(s)
GTP Phosphohydrolases , Glucose , Incretins , Insulin-Secreting Cells , Animals , GTP Phosphohydrolases/genetics , Glucose/metabolism , Glucose/pharmacology , Guanine Nucleotide Exchange Factors/metabolism , Incretins/metabolism , Incretins/pharmacology , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Mice , Mice, Knockout
10.
Diabetes ; 71(7): 1525-1545, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35476777

ABSTRACT

Impaired pancreatic ß-cell function and insulin secretion are hallmarks of type 2 diabetes. miRNAs are short, noncoding RNAs that silence gene expression vital for the development and function of ß cells. We have previously shown that ß cell-specific deletion of the important energy sensor AMP-activated protein kinase (AMPK) results in increased miR-125b-5p levels. Nevertheless, the function of this miRNA in ß cells is unclear. We hypothesized that miR-125b-5p expression is regulated by glucose and that this miRNA mediates some of the deleterious effects of hyperglycemia in ß cells. Here, we show that islet miR-125b-5p expression is upregulated by glucose in an AMPK-dependent manner and that short-term miR-125b-5p overexpression impairs glucose-stimulated insulin secretion (GSIS) in the mouse insulinoma MIN6 cells and in human islets. An unbiased, high-throughput screen in MIN6 cells identified multiple miR-125b-5p targets, including the transporter of lysosomal hydrolases M6pr and the mitochondrial fission regulator Mtfp1. Inactivation of miR-125b-5p in the human ß-cell line EndoCß-H1 shortened mitochondria and enhanced GSIS, whereas mice overexpressing miR-125b-5p selectively in ß cells (MIR125B-Tg) were hyperglycemic and glucose intolerant. MIR125B-Tg ß cells contained enlarged lysosomal structures and had reduced insulin content and secretion. Collectively, we identify miR-125b as a glucose-controlled regulator of organelle dynamics that modulates insulin secretion.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , MicroRNAs , AMP-Activated Protein Kinases/metabolism , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Glucose/pharmacology , Humans , Insulin-Secreting Cells/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism
11.
Diabetologia ; 65(6): 997-1011, 2022 06.
Article in English | MEDLINE | ID: mdl-35294578

ABSTRACT

AIMS/HYPOTHESIS: Although targeted in extrapancreatic tissues by several drugs used to treat type 2 diabetes, the role of AMP-activated protein kinase (AMPK) in the control of insulin secretion is still debatable. Previous studies have used pharmacological activators of limited selectivity and specificity, and none has examined in primary pancreatic beta cells the actions of the latest generation of highly potent and specific activators that act via the allosteric drug and metabolite (ADaM) site. METHODS: AMPK was activated acutely in islets isolated from C57BL6/J mice, and in an EndoC-ßH3 cell line, using three structurally distinct ADaM site activators (991, PF-06409577 and RA089), with varying selectivity for ß1- vs ß2-containing complexes. Mouse lines expressing a gain-of-function mutation in the γ1 AMPK subunit (D316a) were generated to examine the effects of chronic AMPK stimulation in the whole body, or selectively in the beta cell. RESULTS: Acute (1.5 h) treatment of wild-type mouse islets with 991, PF-06409577 or RA089 robustly stimulated insulin secretion at high glucose concentrations (p<0.01, p<0.05 and p<0.001, respectively), despite a lowering of glucose-induced intracellular free Ca2+ dynamics in response to 991 (AUC, p<0.05) and to RA089 at the highest dose (25 µmol/l) at 5.59 min (p<0.05). Although abolished in the absence of AMPK, the effects of 991 were observed in the absence of the upstream kinase, liver kinase B1, further implicating 'amplifying' pathways. In marked contrast, chronic activation of AMPK, either globally or selectively in the beta cell, achieved using a gain-of-function mutant, impaired insulin release in vivo (p<0.05 at 15 min following i.p. injection of 3 mmol/l glucose) and in vitro (p<0.01 following incubation of islets with 17 mmol/l glucose), and lowered glucose tolerance (p<0.001). CONCLUSIONS/INTERPRETATION: AMPK activation exerts complex, time-dependent effects on insulin secretion. These observations should inform the design and future clinical use of AMPK modulators.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , AMP-Activated Protein Kinases/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Mice
13.
Nat Commun ; 12(1): 5165, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34453049

ABSTRACT

Bariatric surgery improves both insulin sensitivity and secretion and can induce diabetes remission. However, the mechanisms and time courses of these changes, particularly the impact on ß cell function, are difficult to monitor directly. In this study, we investigated the effect of Vertical Sleeve Gastrectomy (VSG) on ß cell function in vivo by imaging Ca2+ dynamics in islets engrafted into the anterior eye chamber. Mirroring its clinical utility, VSG in mice results in significantly improved glucose tolerance, and enhanced insulin secretion. We reveal that these benefits are underpinned by augmented ß cell function and coordinated activity across the islet. These effects involve changes in circulating GLP-1 levels which may act both directly and indirectly on the ß cell, in the latter case through changes in body weight. Thus, bariatric surgery leads to time-dependent increases in ß cell function and intra-islet connectivity which are likely to contribute to diabetes remission.


Subject(s)
Calcium/metabolism , Diabetes Mellitus/metabolism , Diabetes Mellitus/surgery , Insulin-Secreting Cells/metabolism , Animals , Bariatric Surgery , Blood Glucose/metabolism , Diabetes Mellitus/diagnostic imaging , Female , Gastrectomy , Glucagon-Like Peptide 1/metabolism , Humans , Insulin/metabolism , Intravital Microscopy , Male , Mice , Mice, Inbred C57BL , Stomach/surgery
14.
FEBS Lett ; 595(13): 1782-1796, 2021 07.
Article in English | MEDLINE | ID: mdl-33960419

ABSTRACT

Sorcin is a calcium-binding protein involved in maintaining endoplasmic reticulum (ER) Ca2+ stores. We have previously shown that overexpressing sorcin under the rat insulin promoter was protective against high-fat diet-induced pancreatic beta-cell dysfunction in vivo. Activating transcription factor 6 (ATF6) is a key mediator of the unfolded protein response (UPR) that provides cellular protection during the progression of ER stress. Here, using nonexcitable HEK293 cells, we show that sorcin overexpression increased ATF6 signalling, whereas sorcin knock out caused a reduction in ATF6 transcriptional activity and increased ER stress. Altogether, our data suggest that sorcin downregulation during lipotoxic stress may prevent full ATF6 activation and a normal UPR during the progression of obesity and insulin resistance.


Subject(s)
Activating Transcription Factor 6/genetics , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Gene Knockout Techniques/methods , Obesity/genetics , Palmitates/adverse effects , Animals , Calcium/metabolism , Cells, Cultured , Disease Progression , Down-Regulation , Endoplasmic Reticulum Stress/drug effects , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , Humans , Insulin Resistance , Mice , Obesity/metabolism , Signal Transduction , Transcriptional Activation/drug effects , Unfolded Protein Response/drug effects
15.
Diabetologia ; 64(4): 850-864, 2021 04.
Article in English | MEDLINE | ID: mdl-33492421

ABSTRACT

AIMS/HYPOTHESIS: Variants close to the VPS13C/C2CD4A/C2CD4B locus are associated with altered risk of type 2 diabetes in genome-wide association studies. While previous functional work has suggested roles for VPS13C and C2CD4A in disease development, none has explored the role of C2CD4B. METHODS: CRISPR/Cas9-induced global C2cd4b-knockout mice and zebrafish larvae with c2cd4a deletion were used to study the role of this gene in glucose homeostasis. C2 calcium dependent domain containing protein (C2CD)4A and C2CD4B constructs tagged with FLAG or green fluorescent protein were generated to investigate subcellular dynamics using confocal or near-field microscopy and to identify interacting partners by mass spectrometry. RESULTS: Systemic inactivation of C2cd4b in mice led to marked, but highly sexually dimorphic changes in body weight and glucose homeostasis. Female C2cd4b mice displayed unchanged body weight compared with control littermates, but abnormal glucose tolerance (AUC, p = 0.01) and defective in vivo, but not in vitro, insulin secretion (p = 0.02). This was associated with a marked decrease in follicle-stimulating hormone levels as compared with wild-type (WT) littermates (p = 0.003). In sharp contrast, male C2cd4b null mice displayed essentially normal glucose tolerance but an increase in body weight (p < 0.001) and fasting blood glucose (p = 0.003) after maintenance on a high-fat and -sucrose diet vs WT littermates. No metabolic disturbances were observed after global inactivation of C2cd4a in mice, or in pancreatic beta cell function at larval stages in C2cd4a null zebrafish. Fasting blood glucose levels were also unaltered in adult C2cd4a-null fish. C2CD4B and C2CD4A were partially localised to the plasma membrane, with the latter under the control of intracellular Ca2+. Binding partners for both included secretory-granule-localised PTPRN2/phogrin. CONCLUSIONS/INTERPRETATION: Our studies suggest that C2cd4b may act centrally in the pituitary to influence sex-dependent circuits that control pancreatic beta cell function and glucose tolerance in rodents. However, the absence of sexual dimorphism in the impact of diabetes risk variants argues for additional roles for C2CD4A or VPS13C in the control of glucose homeostasis in humans. DATA AVAILABILITY: The datasets generated and/or analysed during the current study are available in the Biorxiv repository ( www.biorxiv.org/content/10.1101/2020.05.18.099200v1 ). RNA-Seq (GSE152576) and proteomics (PXD021597) data have been deposited to GEO ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152576 ) and ProteomeXchange ( www.ebi.ac.uk/pride/archive/projects/PXD021597 ) repositories, respectively.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/genetics , Homeostasis/genetics , Insulin-Secreting Cells/metabolism , Nuclear Proteins/genetics , Transcription Factors/genetics , Animals , Biomarkers/blood , Blood Glucose/genetics , Female , Follicle Stimulating Hormone/blood , Genotype , Humans , Insulin/blood , Male , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Pituitary Gland/metabolism , Sex Characteristics , Weight Gain , Zebrafish/blood , Zebrafish/genetics , Zebrafish Proteins/blood , Zebrafish Proteins/genetics
16.
Diabetologia ; 64(1): 129-141, 2021 01.
Article in English | MEDLINE | ID: mdl-33068125

ABSTRACT

AIMS/HYPOTHESIS: Transcription factor 7-like 2 (TCF7L2) is a downstream effector of the Wnt/ß-catenin signalling pathway implicated in type 2 diabetes risk through genome-wide association studies. Although its expression is critical for adipocyte development, the potential roles of changes in adipose tissue TCF7L2 levels in diabetes risk are poorly defined. Here, we investigated whether forced changes in Tcf7l2 expression in adipocytes affect whole body glucose or lipid metabolism and crosstalk between disease-relevant tissues. METHODS: Tcf7l2 was selectively ablated in mature adipocytes in C57BL/6J mice using Cre recombinase under Adipoq promoter control to recombine Tcf7l2 alleles floxed at exon 1 (referred to as aTCF7L2 mice). aTCF7L2 mice were fed normal chow or a high-fat diet for 12 weeks. Glucose and insulin sensitivity, as well as beta cell function, were assessed in vivo and in vitro. Levels of circulating NEFA, selected hormones and adipokines were measured using standard assays. RESULTS: Reduced TCF7L2 expression in adipocytes altered glucose tolerance and insulin secretion in male but not in female mice. Thus, on a normal chow diet, male heterozygote knockout mice (aTCF7L2het) exhibited impaired glucose tolerance at 16 weeks (p = 0.03) and increased fat mass (1.4 ± 0.1-fold, p = 0.007) but no changes in insulin secretion. In contrast, male homozygote knockout (aTCF7L2hom) mice displayed normal body weight but impaired oral glucose tolerance at 16 weeks (p = 0.0001). These changes were mechanistically associated with impaired in vitro glucose-stimulated insulin secretion (decreased 0.5 ± 0.1-fold vs control mice, p = 0.02) and decreased levels of the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide (0.6 ± 0.1-fold and 0.4 ± 0.1-fold vs control mice, p = 0.04 and p < 0.0001, respectively). Circulating levels of plasma NEFA and fatty acid binding protein 4 were increased by 1.3 ± 0.1-fold and 1.8 ± 0.3-fold vs control mice (p = 0.03 and p = 0.05, respectively). Following exposure to a high-fat diet for 12 weeks, male aTCF7L2hom mice exhibited reduced in vivo glucose-stimulated insulin secretion (0.5 ± 0.1-fold vs control mice, p = 0.02). CONCLUSIONS/INTERPRETATION: Loss of Tcf7l2 gene expression selectively in adipocytes leads to a sexually dimorphic phenotype, with impairments not only in adipocytes, but also in pancreatic islet and enteroendocrine cells in male mice only. Our findings suggest novel roles for adipokines and incretins in the effects of diabetes-associated variants in TCF7L2, and further illuminate the roles of TCF7L2 in glucose homeostasis and diabetes risk. Graphical abstract.


Subject(s)
Adipocytes/metabolism , Glucose Intolerance/genetics , Lipid Metabolism/genetics , Transcription Factor 7-Like 2 Protein/genetics , Transcription Factor 7-Like 2 Protein/physiology , Animals , Body Composition/genetics , Fatty Acid-Binding Proteins/blood , Fatty Acids, Nonesterified/blood , Female , Gene Expression , Glucose/pharmacology , Incretins/blood , Insulin Secretion/drug effects , Insulin Secretion/physiology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Integrases/genetics , Integrases/physiology , Lipid Metabolism/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
17.
Mol Metab ; 40: 101015, 2020 10.
Article in English | MEDLINE | ID: mdl-32416313

ABSTRACT

OBJECTIVE: Risk alleles for type 2 diabetes at the STARD10 locus are associated with lowered STARD10 expression in the ß-cell, impaired glucose-induced insulin secretion, and decreased circulating proinsulin:insulin ratios. Although likely to serve as a mediator of intracellular lipid transfer, the identity of the transported lipids and thus the pathways through which STARD10 regulates ß-cell function are not understood. The aim of this study was to identify the lipids transported and affected by STARD10 in the ß-cell and the role of the protein in controlling proinsulin processing and insulin granule biogenesis and maturation. METHODS: We used isolated islets from mice deleted selectively in the ß-cell for Stard10 (ßStard10KO) and performed electron microscopy, pulse-chase, RNA sequencing, and lipidomic analyses. Proteomic analysis of STARD10 binding partners was executed in the INS1 (832/13) cell line. X-ray crystallography followed by molecular docking and lipid overlay assay was performed on purified STARD10 protein. RESULTS: ßStard10KO islets had a sharply altered dense core granule appearance, with a dramatic increase in the number of "rod-like" dense cores. Correspondingly, basal secretion of proinsulin was increased versus wild-type islets. The solution of the crystal structure of STARD10 to 2.3 Å resolution revealed a binding pocket capable of accommodating polyphosphoinositides, and STARD10 was shown to bind to inositides phosphorylated at the 3' position. Lipidomic analysis of ßStard10KO islets demonstrated changes in phosphatidylinositol levels, and the inositol lipid kinase PIP4K2C was identified as a STARD10 binding partner. Also consistent with roles for STARD10 in phosphoinositide signalling, the phosphoinositide-binding proteins Pirt and Synaptotagmin 1 were amongst the differentially expressed genes in ßStard10KO islets. CONCLUSION: Our data indicate that STARD10 binds to, and may transport, phosphatidylinositides, influencing membrane lipid composition, insulin granule biosynthesis, and insulin processing.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Phosphoproteins/metabolism , Alleles , Animals , Carrier Proteins/metabolism , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Female , Insulin/metabolism , Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism , Lipid Metabolism/genetics , Lipid Metabolism/physiology , Lipids/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Docking Simulation , Phosphatidylinositols/metabolism , Phosphoproteins/genetics , Protein Binding , Proteomics , Risk Factors , Secretory Vesicles/metabolism
18.
Diabetologia ; 63(7): 1368-1381, 2020 07.
Article in English | MEDLINE | ID: mdl-32350566

ABSTRACT

AIMS/HYPOTHESIS: Mitochondrial oxidative metabolism is central to glucose-stimulated insulin secretion (GSIS). Whether Ca2+ uptake into pancreatic beta cell mitochondria potentiates or antagonises this process is still a matter of debate. Although the mitochondrial Ca2+ importer (MCU) complex is thought to represent the main route for Ca2+ transport across the inner mitochondrial membrane, its role in beta cells has not previously been examined in vivo. METHODS: Here, we inactivated the pore-forming subunit of the MCU, encoded by Mcu, selectively in mouse beta cells using Ins1Cre-mediated recombination. Whole or dissociated pancreatic islets were isolated and used for live beta cell fluorescence imaging of cytosolic or mitochondrial Ca2+ concentration and ATP production in response to increasing glucose concentrations. Electrophysiological recordings were also performed on whole islets. Serum and blood samples were collected to examine oral and i.p. glucose tolerance. RESULTS: Glucose-stimulated mitochondrial Ca2+ accumulation (p< 0.05), ATP production (p< 0.05) and insulin secretion (p< 0.01) were strongly inhibited in beta cell-specific Mcu-null (ßMcu-KO) animals, in vitro, as compared with wild-type (WT) mice. Interestingly, cytosolic Ca2+ concentrations increased (p< 0.001), whereas mitochondrial membrane depolarisation improved in ßMcu-KO animals. ßMcu-KO mice displayed impaired in vivo insulin secretion at 5 min (p< 0.001) but not 15 min post-i.p. injection of glucose, whilst the opposite phenomenon was observed following an oral gavage at 5 min. Unexpectedly, glucose tolerance was improved (p< 0.05) in young ßMcu-KO (<12 weeks), but not in older animals vs WT mice. CONCLUSIONS/INTERPRETATION: MCU is crucial for mitochondrial Ca2+ uptake in pancreatic beta cells and is required for normal GSIS. The apparent compensatory mechanisms that maintain glucose tolerance in ßMcu-KO mice remain to be established.


Subject(s)
Calcium/metabolism , Mitochondria/metabolism , Animals , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Glucose/metabolism , Insulin Secretion/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
19.
Dalton Trans ; 49(15): 4732-4740, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32207493

ABSTRACT

Global rates of diabetes mellitus are increasing, and treatment of the disease consumes a growing proportion of healthcare spending across the world. Pancreatic ß-cells, responsible for insulin production, decline in mass in type 1 and, to a more limited degree, in type 2 diabetes. However, the extent and rate of loss in both diseases differs between patients resulting in the need for the development of novel diagnostic tools, which could quantitatively assess changes in mass of ß-cells over time and potentially lead to earlier diagnosis and improved treatments. Exendin-4, a potent analogue of glucagon-like-peptide 1 (GLP-1), binds to the receptor GLP-1R, whose expression is enriched in ß-cells. GLP-1R has thus been used in the past as a means of targeting probes for a wide variety of imaging modalities to the endocrine pancreas. However, exendin-4 conjugates designed specifically for MRI contrast agents are an under-explored area. In the present work, the synthesis and characterization of an exendin-4-dota(ga)-Gd(iii) complex, GdEx, is reported, along with its in vivo behaviour in healthy and in ß-cell-depleted C57BL/6J mice. Compared to the ubiquitous probe, [Gd(dota)]-, GdEx shows selective uptake by the pancreas with a marked decrease in accumulation observed after the loss of ß-cells elicited by deleting the microRNA processing enzyme, DICER. These results open up pathways towards the development of other targeted MRI contrast agents based on similar chemistry methodology.


Subject(s)
Contrast Media/chemistry , Coordination Complexes/chemistry , Exenatide/chemistry , Gadolinium/chemistry , Insulin-Secreting Cells/pathology , Magnetic Resonance Imaging , Pancreas/diagnostic imaging , Radiopharmaceuticals/chemistry , Animals , Contrast Media/chemical synthesis , Coordination Complexes/chemical synthesis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Structure , Radiopharmaceuticals/chemical synthesis
20.
Nat Metab ; 1(6): 615-629, 2019 06.
Article in English | MEDLINE | ID: mdl-32694805

ABSTRACT

Pancreatic ß-cells form highly connected networks within isolated islets. Whether this behaviour pertains to the situation in vivo, after innervation and during continuous perfusion with blood, is unclear. In the present study, we used the recombinant Ca2+ sensor GCaMP6 to assess glucose-regulated connectivity in living zebrafish Danio rerio, and in murine or human islets transplanted into the anterior eye chamber. In each setting, Ca2+ waves emanated from temporally defined leader ß-cells, and three-dimensional connectivity across the islet increased with glucose stimulation. Photoablation of zebrafish leader cells disrupted pan-islet signalling, identifying these as likely pacemakers. Correspondingly, in engrafted mouse islets, connectivity was sustained during prolonged glucose exposure, and super-connected 'hub' cells were identified. Granger causality analysis revealed a controlling role for temporally defined leaders, and transcriptomic analyses revealed a discrete hub cell fingerprint. We thus define a population of regulatory ß-cells within coordinated islet networks in vivo. This population may drive Ca2+ dynamics and pulsatile insulin secretion.


Subject(s)
Calcium/metabolism , Insulin-Secreting Cells/metabolism , Animals , Glucose/metabolism , In Vitro Techniques , Insulin/metabolism , Signal Transduction , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...