Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8048, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052854

ABSTRACT

CAR-T therapy is a promising, novel treatment modality for B-cell malignancies and yet many patients relapse through a variety of means, including loss of CAR-T cells and antigen escape. To investigate leukemia-intrinsic CAR-T resistance mechanisms, we performed genome-wide CRISPR-Cas9 loss-of-function screens in an immunocompetent murine model of B-cell acute lymphoblastic leukemia (B-ALL) utilizing a modular guide RNA library. We identified IFNγR/JAK/STAT signaling and components of antigen processing and presentation pathway as key mediators of resistance to CAR-T therapy in vivo; intriguingly, loss of this pathway yielded the opposite effect in vitro (sensitized leukemia to CAR-T cells). Transcriptional characterization of this model demonstrated upregulation of these pathways in tumors relapsed after CAR-T treatment, and functional studies showed a surprising role for natural killer (NK) cells in engaging this resistance program. Finally, examination of data from B-ALL patients treated with CAR-T revealed an association between poor outcomes and increased expression of JAK/STAT and MHC-I in leukemia cells. Overall, our data identify an unexpected mechanism of resistance to CAR-T therapy in which tumor cell interaction with the in vivo tumor microenvironment, including NK cells, induces expression of an adaptive, therapy-induced, T-cell resistance program in tumor cells.


Subject(s)
Burkitt Lymphoma , Leukemia , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Animals , Mice , RNA, Guide, CRISPR-Cas Systems , Immunotherapy, Adoptive , T-Lymphocytes , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Tumor Microenvironment
2.
Front Neurol ; 5: 249, 2014.
Article in English | MEDLINE | ID: mdl-25520697

ABSTRACT

Like other neuroimaging techniques assessing cerebral blood oxygenation, near-infrared spectroscopy (NIRS) has been applied in many neurocognitive studies. With NIRS, neural activation can be explored indirectly via hemodynamic changes in the imaged region. In studies of aging, changes in baseline physiology and brain anatomy confound NIRS measures seeking to investigate age-related changes in neuronal activity. The field is thus hampered by the complexity of the aging process itself, and statistical inferences from functional data acquired by optical imaging techniques must be interpreted with care. Multimodal integration of NIRS with both structural and baseline physiological assessments is crucial to avoid misinterpreting neuroimaging signals. In this study, a combination of two different optical techniques, anatomical MRI and Arterial Spin Labeling (ASL), was used to investigate age-related changes in activation during a lexical-semantic processing task. Quantitative analysis revealed decreased baseline oxyhemoglobin and cerebral blood flow in the older adults. Using baseline physiology measures as regressors in the investigation of functional concentration changes when doing analyses of variance, we found significant changes in task-induced areas of activity. In the right hemisphere, more significant age-related activity was observed around the junction of the inferior frontal gyrus and inferior precentral sulcus, along with engagement of Wernicke's area. In the left hemisphere, the degree and extent of frontal activation, including the dorsolateral prefrontal cortex and inferior frontal gyrus, differed between age groups. Measuring background physiological differences and using their values as regressors in statistical analyses allowed a more appropriate, age-corrected understanding of the functional differentiations between age groups. Age-corrected baselines are thus essential to investigate which components of the NIRS signal are altered by aging.

3.
J Biomed Opt ; 17(5): 056002, 2012 May.
Article in English | MEDLINE | ID: mdl-22612125

ABSTRACT

Diffuse, optical near infrared imaging is increasingly being used in various neurocognitive contexts where changes in optical signals are interpreted through activation maps. Statistical population comparison of different age or clinical groups rely on the relative homogeneous distribution of measurements across subjects in order to infer changes in brain function. In the context of an increasing use of diffuse optical imaging with older adult populations, changes in tissue properties and anatomy with age adds additional confounds. Few studies investigated these changes with age. Duncan et al. measured the so-called diffusion path length factor (DPF) in a large population but did not explore beyond the age of 51 after which physiological and anatomical changes are expected to occur [Pediatr. Res. 39(5), 889-894 (1996)]. With increasing interest in studying the geriatric population with optical imaging, we studied changes in tissue properties in young and old subjects using both magnetic resonance imaging (MRI)-guided Monte-Carlo simulations and time-domain diffuse optical imaging. Our results, measured in the frontal cortex, show changes in DPF that are smaller than previously measured by Duncan et al. in a younger population. The origin of these changes are studied using simulations and experimental measures.


Subject(s)
Aging/pathology , Aging/physiology , Brain/anatomy & histology , Brain/physiology , Tomography, Optical/methods , Adult , Aged , Diffusion , Humans , Infrared Rays , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...