Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Funct Plant Biol ; 39(12): 999-1008, 2012 Dec.
Article in English | MEDLINE | ID: mdl-32480849

ABSTRACT

In conditions of water deficit, plant yield depends mostly on the ability of the plant to explore soil profile and its water uptake capacity per unit volume of soil. In this study, the value of soil water extraction properties for use in sunflower breeding was evaluated. Five experiments were carried out in pots, in greenhouses, from 2005 to 2009, in Montpellier, France. Elite sunflower cultivars and experimental hybrids obtained from a factorial cross between five female and five male inbred lines were grown. The soil water extraction performance of the plants was characterised by the soil water content at minimal stomatal conductance (SWCgs=0) and the index of water extraction (IEgen), which was calculated as the relative value of SWCgs=0 to the performance of the cultivar NKMelody. Heritability (H2) was estimated for the experimental hybrids. Phenotypic variability of the SWCgs=0 was observed with a significant effect of the environment and the genotype. The latest released cultivars were observed as the best performing one in water extraction with an IEgen under 0.85. This trait was found to be suitable for use in comparisons of the soil water extraction performances of different genotypes. The high H2 value for SWCgs=0 (0.77 and 0.81) and the significant correlation (r2=0.70, P<0.001) between the values obtained for the experimental hybrids and the mean values of the general combining ability (GCA) for the parental lines showed that this trait is heritable and could be used in plant breeding programs. Phenotyping methods and the usefulness of this trait in crop modelling are discussed.

2.
Oecologia ; 160(4): 747-55, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19352713

ABSTRACT

Although of primary importance to explain plant community structure, general relationships between plant traits, resource depletion and competitive outcomes remain to be quantified across species. Here, we used a comparative approach to test whether instantaneous measurements of plant traits can capture both the amount of resources depleted under plant cover over time (competitive effect) and the way competitors perceived this resource depletion (competitive response). We performed a large competition experiment in which phytometers from a single grass species were transplanted within 18 different monocultures grown in a common-garden experiment, with a time-integrative quantification of light and water depletion over the phytometers' growing season. Resource-capturing traits were measured on both phytometers (competitive response traits) and monocultures (competitive effect traits). The total amounts of depleted light and water availabilities over the season strongly differed among monocultures; they were best estimated by instantaneous measurements of height and rooting depth, respectively, performed when either light or water became limiting. Specific leaf area and leaf water potential, two competitive response traits measured at the leaf level, were good predictors of changes in phytometer performance under competition, and reflected the amount of light and water, respectively, perceived by plants throughout their lifespan. Our results demonstrated the relevance of instantaneous measures of plant traits as indicators of resource depletion over time, validating the trait-based approach for competition ecology.


Subject(s)
Ecology/methods , Ecosystem , Plant Development , Analysis of Variance , France , Models, Biological , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Plants/metabolism , Species Specificity , Sunlight , Water/metabolism
3.
Funct Plant Biol ; 36(2): 156-170, 2009 Feb.
Article in English | MEDLINE | ID: mdl-32688635

ABSTRACT

The grapevine (Vitis vinifera L.) shoot is a complex modular branching system, with one primary axis and many secondary axes organised into a repetitive structure of three successive phytomers (P0-P1-P2). P1-P2 phytomers bear one tendril or cluster, whereas P0 phytomers bear no tendrils or clusters. Axis development displays a high variability, due, partly, to trophic competition. The aim of this study was to estimate changes in trophic competition within the shoot, and to relate plasticity in axis development to changes in trophic competition. 'Grenache N.' and 'Syrah' cultivars were grown with two contrasting levels of cluster load. Organogenesis and organ mass were measured during shoot development. Changes in trophic competition were estimated, using the solver functions of the GreenLab model. Internodes and clusters were strong sinks. They affected the shoot development to the same extent, but the internodes showed an earlier effect. The cessation of development of the secondary axis was affected by trophic competition, but the primary axis continued to develop, regardless of trophic competition. Secondary axes differed in sensitivity to trophic competition as a function of two criteria: their type and their size. The most highly developed axes were less affected than the smaller axes, and secondary axes arising from a P0 phytomer were also less affected than secondary axes arising from a P1 or P2 phytomer.

4.
Physiol Plant ; 134(1): 49-63, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18399930

ABSTRACT

The effect of trophic competition between vegetative sources and reproductive sinks on grapevine (Vitis vinifera L.) shoot development was analyzed. Two international cultivars (Grenache N and Syrah) grown in pots, which were well watered, were studied. A large range of trophic competition levels was obtained by modifying the cluster loads per plant. An analytical breakdown of the branching system was used to analyze the effects of trophic competition. Phytomer production on the primary axis and the probability and timing of axillary budburst were not affected by trophic competition. However, the duration of development and leaf production rate for secondary axes were both significantly affected. The impact of trophic competition differed within the P0-P1-P2 architectural module, locally within the shoot and between cultivars. Trophic competition reduced the organogenesis of secondary axes most strongly close to clusters, on P1-P2 phytomers and in Grenache N. Based on these results, a modeling approach simulating sink strength variation and the local effects of sink proximity would be more relevant than a model considering only development as a function of thermal time or the global distribution of available biomass.


Subject(s)
Plant Shoots/growth & development , Vitis/growth & development , Models, Biological , Plant Shoots/anatomy & histology , Vitis/anatomy & histology
5.
Ann Bot ; 101(8): 1167-84, 2008 May.
Article in English | MEDLINE | ID: mdl-18202006

ABSTRACT

BACKGROUND AND AIMS: In grapevine, canopy-structure-related variations in light interception and distribution affect productivity, yield and the quality of the harvested product. A simple statistical model for reconstructing three-dimensional (3D) canopy structures for various cultivar-training system (C x T) pairs has been implemented with special attention paid to balance the time required for model parameterization and accuracy of the representations from organ to stand scales. Such an approach particularly aims at overcoming the weak integration of interplant variability using the usual direct 3D measurement methods. MODEL: This model is original in combining a turbid-medium-like envelope enclosing the volume occupied by vine shoots with the use of discrete geometric polygons representing leaves randomly located within this volume to represent plant structure. Reconstruction rules were adapted to capture the main determinants of grapevine shoot architecture and their variability. Using a simplified set of parameters, it was possible to describe (1) the 3D path of the main shoot, (2) the volume occupied by the foliage around this path and (3) the orientation of individual leaf surfaces. Model parameterization (estimation of the probability distribution for each parameter) was carried out for eight contrasting C x T pairs. KEY RESULTS AND CONCLUSIONS: The parameter values obtained in each situation were consistent with our knowledge of grapevine architecture. Quantitative assessments for the generated virtual scenes were carried out at the canopy and plant scales. Light interception efficiency and local variations of light transmittance within and between experimental plots were correctly simulated for all canopies studied. The approach predicted these key ecophysiological variables significantly more accurately than the classical complete digitization method with a limited number of plants. In addition, this model accurately reproduced the characteristics of a wide range of individual digitized plants. Simulated leaf area density and the distribution of light interception among leaves were consistent with measurements. However, at the level of individual organs, the model tended to underestimate light interception.


Subject(s)
Models, Theoretical , Plant Shoots/growth & development , Vitis/growth & development , Computer Simulation , Imaging, Three-Dimensional/methods , Plant Shoots/anatomy & histology , Vitis/anatomy & histology
6.
Ann Bot ; 101(8): 1139-51, 2008 May.
Article in English | MEDLINE | ID: mdl-18218705

ABSTRACT

BACKGROUND AND AIMS: Light interception is a critical factor in the production of biomass. The study presented here describes a method used to take account of architectural changes over time in sunflower and to estimate absorbed light at the organ level. METHODS: The amount of photosynthetically active radiation absorbed by a plant is estimated on a daily or hourly basis through precise characterization of the light environment and three-dimensional virtual plants built using AMAP software. Several treatments are performed over four experiments and on two genotypes to test the model, quantify the contribution of different organs to light interception and evaluate the impact of heliotropism. KEY RESULTS: This approach is used to simulate the amount of light absorbed at organ and plant scales from crop emergence to maturity. Blades and capitula were the major contributors to light interception, whereas that by petioles and stem was negligible. Light regimen simulations showed that heliotropism decreased the cumulated light intercepted at the plant scale by close to 2.2% over one day. CONCLUSIONS: The approach is useful in characterizing the light environment of organs and the whole plant, especially for studies on heterogeneous canopies or for quantifying genotypic or environmental impacts on plant architecture, where conventional approaches are ineffective. This model paves the way to analyses of genotype-environment interactions and could help establish new selection criteria based on architectural improvement, enhancing plant light interception.


Subject(s)
Computer Simulation , Helianthus/growth & development , Light , Phototropism/radiation effects , Biomass , Genotype , Helianthus/anatomy & histology , Helianthus/genetics , Imaging, Three-Dimensional/methods , Models, Biological
7.
New Phytol ; 175(3): 472-481, 2007.
Article in English | MEDLINE | ID: mdl-17635222

ABSTRACT

The SERRATE gene (SE) was shown to determine leaf organogenesis and morphogenesis patterning in Arabidopsis thaliana. The se-1 mutant was used here to investigate the role of SE in leaf development in response to incident light. Virtual plants were modelled to analyse the phenotypes induced by this mutation. Plants were grown under various levels of incident light. The amount of light absorbed by the plant was estimated by combining detailed characterizations of the radiative environment and virtual plant simulations. Four major changes in leaf development were induced by the se-1 mutation. Two constitutive leaf growth variables were modified, with a lower initial expansion rate and a higher duration of expansion. Two original responses to a reduced incident light were identified, concerning the leaf-initiation rate and the duration of leaf expansion. The se-1 mutation dramatically affects both changes in the leaf development pattern and the response to reduced incident light. Virtual plants helped to reveal the combined effects of the multiple changes induced by this mutation.


Subject(s)
Arabidopsis/physiology , Calcium-Binding Proteins/physiology , Intercellular Signaling Peptides and Proteins/physiology , Light , Membrane Proteins/physiology , Arabidopsis/embryology , Arabidopsis/genetics , Arabidopsis Proteins , Calcium-Binding Proteins/genetics , Computer Simulation , Gene Expression Regulation, Plant , Intercellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Models, Biological , Mutation , Phenotype , Plant Leaves/embryology , Plant Leaves/physiology , RNA-Binding Proteins , Serrate-Jagged Proteins
8.
Ann Bot ; 99(3): 425-37, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17204533

ABSTRACT

BACKGROUND AND AIMS: Plant architecture and its interaction with agronomic practices and environmental constraints are determinants of the structure of the canopy, which is involved in carbon acquisition and fruit quality development. A framework for the quantitative analysis of grapevine (Vitis vinifera) shoot architecture, based on a set of topological and geometrical parameters, was developed for the identification of differences between cultivars and the origins of phenotypic variability. METHODS: Two commercial cultivars ('Grenache N', 'Syrah') with different shoot architectures were grown in pots, in well-irrigated conditions. Shoot topology was analysed, using a hidden semi-Markov chain and variable-order Markov chains to identify deviations from the normal pattern of succession of phytomer types (P0-P1-P2), together with kinematic analysis of shoot axis development. Shoot geometry was characterized by final internode and individual leaf area measurements. KEY RESULTS: Shoot architecture differed significantly between cultivars. Secondary leaf area and axis length were greater for 'Syrah'. Secondary leaf area distribution along the main axis also differed between cultivars, with secondary leaves preferentially located towards the basal part of the shoot in 'Syrah'. The main factors leading to differences in leaf area between the cultivars were: (a) slight differences in main shoot structure, with the supplementary P0 phytomer on the lower part of the shoot in 'Grenache N', which bears a short branch; and (b) an higher rate and duration of development of branches bearing by P1-P2 phytomers related to P0 ones at the bottom of the shoot in 'Syrah'. Differences in axis length were accounted for principally by differences in individual internode morphology, with 'Syrah' having significantly longer internodes. This trait, together with a smaller shoot diameter, may account for the characteristic 'droopy' habit of 'Syrah' shoots. CONCLUSIONS: This study highlights the architectural parameters involved in the phenotypic variability of shoot architecture in two grapevine cultivars. Differences in primary shoot structure and in branch development potential accounted for the main differences in leaf area distribution between the two cultivars. By contrast, shoot shape seemed to be controlled by differences in axis length due principally to differences in internode length.


Subject(s)
Vitis/anatomy & histology , Kinetics , Markov Chains , Phenotype , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Shoots/anatomy & histology , Plant Shoots/growth & development , Vitis/classification , Vitis/growth & development
9.
Ann Bot ; 98(1): 175-85, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16679414

ABSTRACT

BACKGROUND AND AIMS: Soil water deficit is a major abiotic stress with severe consequences for the development, productivity and quality of crops. However, it is considered a positive factor in grapevine management (Vitis vinifera), as it has been shown to increase grape quality. The effects of soil water deficit on organogenesis, morphogenesis and gas exchange in the shoot were investigated. METHODS: Shoot organogenesis was analysed by distinguishing between the various steps in the development of the main axis and branches. Several experiments were carried out in pots, placed in a greenhouse or outside, in southern France. Soil water deficits of various intensities were imposed during vegetative development of the shoots of two cultivars ('Syrah' and 'Grenache N'). KEY RESULTS: All developmental processes were inhibited by soil water deficit, in an intensity-dependent manner, and sensitivity to water stress was process-dependent. Quantitative relationships with soil water were established for all processes. No difference was observed between the two cultivars for any criterion. The number of leaves on branches was particularly sensitive to soil water deficit, which rapidly and strongly reduced the rate of leaf appearance on developing branches. This response was not related to carbon availability, photosynthetic activity or the soluble sugar content of young expanding leaves. The potential number of branches was not a limiting factor for shoot development. CONCLUSIONS: The particularly high sensitivity to soil water deficit of leaf appearance on branches indicates that this process is a major determinant of the adaptation of plant leaf area to soil water deficit. The origin of this particular developmental response to soil water deficit is unclear, but it seems to be related to constitutive characteristics of branches rather than to competition for assimilates between axes differing in sink strength.


Subject(s)
Morphogenesis/physiology , Soil , Vitis/growth & development , Carbohydrate Metabolism , Carbon Dioxide/metabolism , Oxygen/metabolism , Photosynthesis , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Shoots/anatomy & histology , Plant Shoots/growth & development , Plant Shoots/metabolism , Vitis/anatomy & histology , Vitis/metabolism , Water/metabolism
10.
Funct Plant Biol ; 32(12): 1123-1134, 2006 Jan.
Article in English | MEDLINE | ID: mdl-32689206

ABSTRACT

Plants have a high phenotypic plasticity in response to light. We investigated changes in plant architecture in response to decreased incident light levels in Arabidopsis thaliana (L.) Heynh, focusing on organogenesis and morphogenesis, and on consequences for the efficiency of light interception of the rosette. A. thaliana ecotype Columbia plants were grown under various levels of incident photosynthetically active radiation (PAR), with blue light (BL) intensity proportional to incident PAR intensity and with a high and stable red to far-red light ratio. We estimated the PAR absorbed by the plant, using data from precise characterisation of the light environment and 3-dimensional simulations of virtual plants generated with AMAPsim software. Decreases in incident PAR modified rosette architecture; leaf area decreased, leaf blades tended to be more circular and petioles were longer and thinner. However, the efficiency of light interception by the rosette was slightly higher in plants subjected to lower PAR intensities, despite the reduction in leaf area. Decreased incident PAR delayed leaf initiation and slowed down relative leaf expansion rate, but increased the duration of leaf expansion. The leaf initiation rate and the relative expansion rate during the first third of leaf development were related to the amount of PAR absorbed. The duration of leaf expansion was related to PAR intensity. The relationships identified could be used to analyse the phenotypic plasticity of various genotypes of Arabidopsis. Overall, decreases in incident PAR result in an increase in the efficiency of light interception.

11.
Ann Bot ; 93(3): 263-74, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14749253

ABSTRACT

BACKGROUND AND AIMS: Shoot architecture variability in grapevine (Vitis vinifera) was analysed using a generic modelling approach based on thermal time developed for annual herbaceous species. The analysis of shoot architecture was based on various levels of shoot organization, including pre-existing and newly formed parts of the stem, and on the modular structure of the stem, which consists of a repeated succession of three phytomers (P0-P1-P2). METHODS: Four experiments were carried out using the cultivar 'Grenache N': two on potted vines (one of which was carried out in a glasshouse) and two on mature vines in a vineyard. These experiments resulted in a broad diversity of environmental conditions, but none of the plants experienced soil water deficit. KEY RESULTS: Development of the main axis was highly dependent on air temperature, being linearly related to thermal time for all stages of leaf development from budbreak to veraison. The stable progression of developmental stages along the main stem resulted in a thermal-time based programme of leaf development. Leaf expansion rate varied with trophic competition (shoot and cluster loads) and environmental conditions (solar radiation, VPD), accounting for differences in final leaf area. Branching pattern was highly variable. Classification of the branches according to ternary modular structure increased the accuracy of the quantitative analysis of branch development. The rate and duration of leaf production were higher for branches derived from P0 phytomers than for branches derived from P1 or P2 phytomers. Rates of leaf production, expressed as a -function of thermal time, were not stable and depended on trophic competition and environmental conditions such as solar radiation or VPD. CONCLUSIONS: The application to grapevine of a generic model developed in annual plants made it possible to identify constants in main stem development and to determine the hierarchical structure of branches with respect to the modular structure of the stem in response to intra- and inter-shoot trophic competition.


Subject(s)
Plant Leaves/growth & development , Plant Shoots/growth & development , Plant Stems/growth & development , Vitis/growth & development , Models, Statistical , Sunlight , Temperature , Water/metabolism
12.
J Exp Bot ; 54(392): 2541-52, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14512387

ABSTRACT

Common features in the time-course of expansion of leaves which considerably differed in final area, due to phytomer position, growing conditions and genotype, were identified. Leaf development consisted of two phases of exponential growth, followed by a third phase of continuous decrease of the relative expansion rate. The rate and the duration of the first exponential phase were common to all phytomers, growing conditions and genotypes. Leaves differed in the rate and the duration of the second exponential phase. The decrease of the relative expansion rate during the third phase depended on neither genotype nor growing conditions. It was phytomer-dependent and was deduced from the rate of the second phase via a parameter common to all cases studied. Differences in final leaf area among growing conditions were linked to different expansion rates during the second exponential phase. The duration of the phases at any given phytomer position was the same for the two hybrids in different growing conditions. The dates of developmental events (initiation, end of the two exponential phases, full expansion), and the rate of the second exponential phase, were related to phytomer position, defining a strict pattern of leaf development at the whole plant level. Using this framework simplified the analysis of the response of leaf expansion to genotype and environment.


Subject(s)
Helianthus/growth & development , Plant Leaves/growth & development , Helianthus/genetics , Hybridization, Genetic , Kinetics , Species Specificity
13.
Funct Plant Biol ; 30(11): 1151-1164, 2003 Jan.
Article in English | MEDLINE | ID: mdl-32689097

ABSTRACT

Seed number, the most variable yield component of legumes is strongly affected by heat stress (HS) and water deficit (WD). The objective of this paper is to investigate whether HS and WD reduced seed number in field pea through their negative effects on biomass production rather than by specific effects on the developing reproductive organs. Several field and glasshouse experiments were carried out in southern France, in which HS and / or WD of various intensities, durations and positions in the plant lifecycle were imposed on several pea cultivars. WD and HS reduced seed number, in an intensity-dependent manner. They also changed the distribution of seeds along the stem. Plants subjected to WD and mild HS had more seeds on the basal phytomers than did control plants, making it possible to exclude direct effects of stress on seed development. In contrast, severe HS resulted in the immediate abortion of reproductive organs. WD and HS also decreased net photosynthesis (Pn), but only during the period of constraint. Quantitative relationships between Pn and soil water status and between Pn and leaf temperature were established. Nevertheless, in all cases there was a single linear relationship between final seed number and plant growth rate during the critical period for seed set (from the beginning of flowering to the beginning of seed fill for the last seed-bearing phytomer). This reflects the reproductive plasticity of pea, which adjusts the number of reproductive sinks in an apparent balance with assimilate availability in the plant.

SELECTION OF CITATIONS
SEARCH DETAIL
...