Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 57(1): 53-56, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33332511

ABSTRACT

Here we show that nonanuclear lanthanide complexes respresent a new class of solution state upconversion (UC) molecules. For a composition of one Tb per eight Yb the nonanuclear complexes display a very efficient UC phenomenon with Tb luminescence in the visible region upon 980 nm NIR excitation of Yb. An unprecedented value of 1.0 × 10-7 was obtained for the UC efficiency at only 2.86 W cm-2, demonstrating these new molecular complexes to be up to 26 times more efficient than the best current molecular systems, the UC being observed down to a concentration of 10 nM.

2.
J Am Chem Soc ; 141(4): 1568-1576, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30612432

ABSTRACT

Piling up excited states to reach upconversion (UC) is severely restricted by vibrational quenching mechanisms, especially when one looks at discrete molecular entities in solution. By carefully controlling the supramolecular assembly processes resulting from the strong electrostatic interactions between negatively charged Yb complexes and Tb3+ cations in aqueous solutions, we engineered the formation of heteropolynuclear complexes of [(YbL)2Tb x] compositions ( x = 1 and 2). These edifices display a phenomenon of cooperative photosensitization UC with green emission of the Tb cations upon NIR excitation at 980 nm in the Yb absorption band. The photophysical properties of the complexes were carefully investigated by steady-state and time-resolved luminescence experiments in D2O, allowing one to quantify the impact of the composition and pD of the solution on the emission intensity as well as clarifying the exact cooperative photosensitization upconversion mechanism. Using optimized conditions, the energy transfer UC process could be observed for the first time in nondeuterated water with discrete molecular compounds.

3.
Inorg Chem ; 57(10): 6095-6106, 2018 May 21.
Article in English | MEDLINE | ID: mdl-29746120

ABSTRACT

A series of polynuclear assemblies based on ligand L (1,4,7-tris[hydrogen (6-methylpyridin-2-yl)phosphonate]-1,4,7-triazacyclononane) has been developed. The coordination properties of ligand L with LnIII (Ln = La, Eu, Tb, Yb, Lu) have been studied in water (pH = 7.0) and in D2O (pD = 7.0) by UV-absorption spectrometry, spectrofluorimetry, 1H and 31P NMR, DOSY, ESI-mass spectrometry, and X-ray diffraction. This nonadentate ligand forms highly stable mononuclear complexes in water and provides a very efficient shielding of the Ln cations, as emphasized by the very good luminescence properties of the Yb complex in D2O, especially regarding its lifetime (τD2O = 10.2 µs) and quantum yield (ϕD2O = 0.42%). In the presence of excess LnIII cation, polynuclar complexes of [(LnL)2Ln x] stoichiometry (x = 1 and x = 2) are observed in solution. In the solid state, a dinuclear complex of La could be isolated and structurally characterized by X-ray diffraction, unraveling the presence of strong hydrogen bonding interactions between a La(H2O)93+ cation and the [LaL]3- complex.

4.
Inorg Chem ; 55(24): 12962-12974, 2016 Dec 19.
Article in English | MEDLINE | ID: mdl-27989158

ABSTRACT

The synthesis of the octadentate ligand L (LH8 = ((([2,2'-bipyridine]-6,6'-diylbis(methylene))bis(azanetriyl))tetrakis(methylene))tetrakis(phosphonic acid)) is reported. The coordination of L with various lanthanide cations was monitored by absorption and luminescence spectrophotometric titration experiments (Ln = Tb, Yb), potentiometry (Ln = La, Eu, Lu), and mass spectrometry (Ln = Tb). It was found that L forms very stable mononuclear (LnL) species in aqueous solutions (log K = 19.80(5), 19.5(2), and 19.56(5) for La, Eu, and Lu, respectively) with no particular trend along the series. Spectroscopic data showed the Ln cations to be enclosed in the cavity formed by the octadentate ligand, thereby shielding the metal from interactions with water molecules in the first coordination sphere. When more than one equivalent of cations is added, the formation of polynuclear [(LnL)2Lnx] complexes (x = 1-3) can be observed, the presence of which could be confirmed by electrospray and MALDI mass spectrometry experiments. DFT modeling of the mononuclear (LnL) complexes indicated that the coordination of the cation in the cavity of the ligand results in a very asymmetric charge distribution, with a region of small negative electrostatic potential on the hemisphere composed of the chromophoric bipyridyl moiety and an electron-rich domain at the opposite hemisphere around the four phosphonate functions. DFT further showed that this polarization is most likely at the origin of the strong interactions between the (LnL) complexes and the incoming additional cations, leading to the formation of the polynuclear species. 1H and 31P NMR were used to probe the possible exchange of the lanthanide complexed in the cavity of the ligand in D2O, revealing no detectable exchange after 4 weeks at 80 °C and neutral pD, therefore pointing out an excellent kinetic inertness.

5.
Chempluschem ; 81(6): 497, 2016 Jun.
Article in English | MEDLINE | ID: mdl-31968925

ABSTRACT

Invited for this month's cover are the collaborating groups of Dr. Loïc J. Charbonnière at CNRS/Université de Strasbourg, France and Dr. Ka-Leung Wong at Hong Kong Baptist University, Hong Kong. The cover picture shows terbium-doped LaF3 nanoparticles that are surface functionalized by photon-harvesting antenna ligands. Surface capping with antenna ligands leads to ultrabright nanoparticles, with the typical green luminescence signature of the Tb atoms and very long excited-state lifetimes. These lanthanide dots can be incorporated into living cells at nanomolar concentrations for luminescence microscopy imaging. Read the full text of the article at 10.1002/cplu.201600007.

6.
Chempluschem ; 81(6): 526-534, 2016 Jun.
Article in English | MEDLINE | ID: mdl-31968928

ABSTRACT

Tb-doped La0.9 Tb0.1 F3 nanoparticles were prepared by a simple and reproducible microwave-assisted synthetic protocol in water. The nanoparticles were characterized by XRD, TEM, dynamic light scattering and inductively coupled plasma atomic emission spectroscopy elemental analysis. Eleven ligands with varying coordination and photosensitizing abilities were designed to bind at the surface of the Tb-doped nanoparticles. The photosensitizing behavior was monitored by electronic absorption spectroscopy and steady-state and time-resolved emission spectroscopy. The two most effective photosensitizing ligands were used to isolate and purify the capped nanoparticles. The composition and spectroscopic properties of these nanoparticles were measured, which revealed either 2660 and 5240 ligands per nanoparticle, molar absorptivities of 7.6×106 and 1.6×107 m-1 cm-1 and luminescence quantum yields of 0.29 and 0.13 in water, respectively. These data correspond to exceptional brightness values of 2.2×106 and 2.1×106 m-1 cm-1 , respectively. The as-prepared nanoparticles were imaged in HeLa cells by fluorescence microscopy, which showed their specific localization in lysosomes.

7.
Phys Chem Chem Phys ; 17(3): 1740-5, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25464013

ABSTRACT

Hemolysis, the rupturing of red blood cells, can result from numerous medical conditions (in vivo) or occur after collecting blood specimen or extracting plasma and serum out of whole blood (in vitro). In clinical laboratory practice, hemolysis can be a serious problem due to its potential to bias detection of various analytes or biomarkers. Here we present the first "mix-and-measure" method to assess the degree of hemolysis in biosamples using luminescence spectroscopy. Luminescent terbium complexes (LTC) were studied in the presence of free hemoglobin (Hb) as indicators for hemolysis in TRIS-buffer, and in fresh human plasma with absorption, excitation and emission measurements. Our findings indicate dynamic as well as resonance energy transfer (FRET) between the LTC and the porphyrin ligand of hemoglobin. This transfer leads to a decrease in luminescence intensity and decay time even at nanomolar hemoglobin concentrations either in buffer or plasma. Luminescent terbium complexes are very sensitive to free hemoglobin in buffer and blood plasma. Due to the instant change in luminescence properties of the LTC in presence of Hb it is possible to access the concentration of hemoglobin via spectroscopic methods without incubation time or further treatment of the sample thus enabling a rapid and sensitive detection of hemolysis in clinical diagnostics.


Subject(s)
Blood Chemical Analysis/methods , Coordination Complexes/chemistry , Hemoglobins/analysis , Serum/chemistry , Terbium/chemistry , Hemoglobins/chemistry , Humans , Luminescence
8.
Org Biomol Chem ; 12(47): 9601-20, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25338628

ABSTRACT

A series of bis-, tris- and tetra-phosphonated pyridine ligands is presented. In view of their potential use as chelates for radiopharmaceutical applications, the physico-chemical properties of the ligands and of their Co(II), Ni(II), Cu(II), and Zn(II) complexes were studied by means of potentiometry and UV-Vis absorption spectroscopy. The pKa values of the ligands and of the complexes, as well as the stability constants for the formation of the complexes, are presented. The kinetic aspects of the formation of Cu(II) complexes and of their dissociation in acidic media were studied by means of stopped flow experiments, and the stability of the Cu(II) complex toward reduction to Cu(I) was investigated by cyclic voltammetry and by titration with different reducing agents. The different thermodynamic and kinetic aspects of the polyphosphonated ligands were compared with regard to the impact of the number of phosphonic acid functions. Considering the very promising properties for complexation, preliminary SPECT/CT imaging experiments were carried out on mice with (99m)Tc using the bis- and tetra-phosphonated ligands L(2) and L(1). Finally, a bifunctional version of chelate L(1), L*, was used to label MTn12, a rat monoclonal antibody with both specificity and relatively high affinity for murine tenascin-C. The labeling was monitored by MALDI/MS spectrometry and the affinity of the labeled antibody was checked by immunostaining experiments. After chelation with (99m)Tc, the (99m)Tc-L*-MTn12 antibody was injected into a transgenic mouse with breast cancer and the biodistribution of the labeled antibody was followed by SPECT/CT imaging.


Subject(s)
Chelating Agents/chemistry , Coordination Complexes/chemistry , Organophosphonates/chemistry , Pyridines/chemistry , Radiopharmaceuticals/chemistry , Animals , Antibodies, Monoclonal/chemistry , Breast Neoplasms/diagnosis , Female , Ligands , Mice , Mice, Transgenic , Rats , Tenascin/analysis , Thermodynamics , Tissue Distribution , Tomography, Emission-Computed, Single-Photon
9.
Dalton Trans ; 43(24): 9070-80, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24788186

ABSTRACT

The synthesis of ligand L(T)H8, based on a thiophene framework containing two bis(aminomethyldiphosphonate) functions in the ortho position to the central sulfur atom, is described, together with the characterization of the intermediate compounds. The physico-chemical properties of the ligand were first studied by means of potentiometry and UV-Vis absorption spectrophotometric titrations to determine its pK values. Six successive equilibrium constants were determined in aqueous solutions. The same means were then used to quantify the interactions of the ligand with Ni(II), Cu(II) and Zn(II). Following the conventional Irving-Williams trend, L(T) was shown to have the highest affinity towards Cu(II) (log K(CuL(T)) = 16.11(3)), while Zn(II) and Ni(II) showed similar values (log K(ML(T)) = 10.81(8) and 10.9(1), respectively), revealing a large selectivity of L(T) toward Cu(II). Based on a combination of UV-Vis absorption spectroscopy and EPR measurements as a function of pH, along with DFT calculations, the coordination behavior of the hard phosphonate, medium amino and soft thiophene entities are questioned regarding their coordination to the Cu atom.


Subject(s)
Organophosphonates/chemistry , Thiophenes/chemistry , Amines/chemistry , Chelating Agents/chemistry , Copper/chemistry , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Ions , Ligands , Materials Testing , Models, Chemical , Nickel/chemistry , Phosphorylation , Potentiometry , Pyridines/chemistry , Solvents/chemistry , Spectrophotometry , Spectrophotometry, Ultraviolet , Thermodynamics , Water/chemistry , Zinc/chemistry
10.
Org Biomol Chem ; 11(38): 6493-501, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-23851931

ABSTRACT

The first example of an activated phosphonated trifunctional chelate (TFC) is presented, which combines a non-macrocyclic coordination site for lanthanide coordination based on two aminobis-methylphosphonate coordinating arms, a central bispyrazolylpyridyl antenna and an N-hydroxysuccinimide ester in para position of the central pyridine as an activated function for the labeling of biomaterial. The synthesis of the TFC is presented together with photo-physical studies of the related Tb and Eu complexes. Excited state lifetime measurements in H2O and D2O confirmed an excellent shielding of the cation from water molecules with a hydration number of zero. The Tb complex provides a high photoluminescence (PL) quantum yield of 24% in aqueous solutions (0.01 M Tris-HCl, pH 7.4) and a very long luminescence lifetime of 2.6 ms. The activated ligand was conjugated to different biological compounds such as streptavidin, and a monoclonal antibody against total prostate specific antigen (TPSA). In combination with AlexaFluor647 (AF647) and crosslinked allophycocyanin (XL665) antibody (ABs) conjugates, homogeneous time-resolved Fluorescence Resonance Energy Transfer (FRET) immunoassays of TPSA were performed in serum samples. The Tb donor-dye acceptor FRET pairs provided large Förster distances of 5.3 nm (AF647) and 7.1 nm (XL665). A detailed time-resolved FRET analysis of Tb donor and dye acceptor PL decays revealed average donor-acceptor distances of 4.2 nm (AF647) and 6.3 nm (XL665) within the sandwich immunocomplex and FRET efficiencies of 0.79 and 0.68, respectively. Very low detection limits of 1.4 ng mL(-1) (43 pM) and 2.4 ng mL(-1) (74 pM) TPSA were determined using a KRYPTOR fluorescence immunoanalyzer. These results demonstrate the applicability of our novel Tb-bioconjugates for highly sensitive clinical diagnostics.


Subject(s)
Chelating Agents/chemistry , Fluorescence Resonance Energy Transfer , Lanthanoid Series Elements/chemistry , Organometallic Compounds/chemistry , Organophosphorus Compounds/chemistry , Prostate-Specific Antigen/analysis , Chelating Agents/chemical synthesis , Immunoassay , Molecular Structure , Organometallic Compounds/chemical synthesis
11.
Chem Commun (Camb) ; 48(34): 4085-7, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22430859

ABSTRACT

A Gd complex based on a polyphosphonated pyridyl ligand shows a very high stability in aqueous solution (log K(EuL) = 25.7), a high relaxivity (8.5 mM(-1) s(-1) at 25 °C and 20 MHz) and a marked and selective relaxivity enhancement (37%) in the presence of Mg(2+), opening interesting perspectives for the design of cation responsive contrast agents.


Subject(s)
Contrast Media/chemistry , Gadolinium/chemistry , Magnesium/analysis , Coordination Complexes/chemistry , Ligands , Magnetic Resonance Imaging , Models, Molecular , Pyridines/chemistry
12.
Inorg Chem ; 50(24): 12508-21, 2011 Dec 19.
Article in English | MEDLINE | ID: mdl-22070127

ABSTRACT

The syntheses of a new cyclen-based ligand L(2) containing four N-[2-(2-hydroxyethoxy)ethyl]acetamide pendant arms and of its lanthanide(III) complexes [LnL(2)(H(2)O)]Cl(3) (Ln = La, Eu, Tb, Yb, or Lu) are reported, together with a comparison with some Ln(III) complexes of a previously reported analogue L(1) in which two opposite amide arms have been replaced by coordinating pyridyl units. The structure and dynamics of the La(III), Lu(III), and Yb(III) complexes in solution were studied by using multinuclear NMR investigations and density functional theory calculations. Luminescence lifetime measurements in H(2)O and D(2)O solutions of the [Ln(L(2))(H(2)O)](3+) complexes (Ln = Eu or Tb) were used to investigate the number of H(2)O molecules coordinated to the metal ion, pointing to the presence of an inner-sphere H(2)O molecule in a buffered aqueous solution. Fluoride binding to the latter complexes was investigated using a combination of absorption spectroscopy and steady-state and time-resolved luminescence spectroscopy, pointing to a surprisingly weak interaction in the case of L(2) (log K = 1.4 ± 0.1). In contrast to the results in solution, the X-ray crystal structure of the lanthanide complex showed the ninth coordination position occupied by a chloride anion. In the case of L(1), the X-ray structure of the [(EuL(1))(2)F] complex features a bridging fluoride donor with an uncommon linear Eu-F-Eu entity connecting two almost identical [Eu(L(1))](3+) units. Encapsulation of the F(-) anion within the two complexes is assisted by π-π stacking between the pyridyl rings of two complexes and C-H···F hydrogen-bonding interactions involving the anion and the pyridyl units.


Subject(s)
Fluorides , Lanthanoid Series Elements/chemistry , Organometallic Compounds/chemical synthesis , Acetamides/chemistry , Buffers , Chemistry Techniques, Analytical , Crystallography, X-Ray , Cyclams , Deuterium Oxide/chemistry , Fluorides/chemistry , Heterocyclic Compounds/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Ligands , Luminescence , Models, Molecular , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Pyridines/chemistry , Quantum Theory , Solutions , Water/chemistry , X-Ray Absorption Spectroscopy
13.
Inorg Chem ; 50(5): 1689-97, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21214206

ABSTRACT

The synthesis of ligand L(P)H(8), based on a 2,6-bispyrazolyl-pyridine scaffold functionalized by iminobismethylenephosphonate functions, is described and its pK values were determined by a combination of pH-spectrophotometric titrations and potentiometry. The interaction of L(P) with Tb(3+) was investigated in water (0.01 M TRIS/HCl pH = 7.0) by means of UV-vis and fluorescence titration experiments and evidenced the formation of at least three species with 1:1; 1:2, and 2:1 M-L ratios, the 1:1 complex appearing as particularly stable under these conditions (log K(cond) > 8). Na(4)[LnL(P)H] complexes (Ln = Eu and Tb) were prepared and characterized by elemental analysis, IR spectroscopy, and electrospray mass spectrometry. Their photophysical properties were investigated in aqueous solutions, revealing an excellent shielding of the Ln cations from the solvent environment (no water molecules in the first coordination sphere), very long luminescence lifetimes (τ(H(2)(O)) = 1.50 and 3.28 ms, respectively, for Eu and Tb) and reasonable luminescent quantum yields (ϕ(H(2)(O)) = 2.4 and 37%, respectively, for Eu and Tb). Using fetal bovine serum as a model for biological media showed the Tb complex to remain luminescent in these conditions. The structure of the europium complex was studied by means of density functional theory (DFT) modeling, confirming the wrapping of the ligand around the cation, and the very good shielding of the coordinated Ln cation. The conditional stability constant for the formation of the Tb complex with L(P) was determined by competition experiments with EDTA and monitored by fluorescence spectroscopy (log K(TbL(P)cond) = 14.1 ± 0.3, 0.01 M TRIS/HCl, pH = 7.4) and was used to determine the thermodynamic constant (log K(TbL(P)) = 20.4 ± 0.4). A systematic comparison with ligand L(C), in which phosphonate functions are replaced by carboxylate ones, is made throughout the study, highlighting the large interest of the introduction of phosphonate moieties to obtain biologically stable luminescent lanthanide complexes.


Subject(s)
Lanthanoid Series Elements/chemistry , Luminescence , Models, Molecular , Spectrophotometry, Ultraviolet
14.
Dalton Trans ; 39(38): 9055-62, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20725674

ABSTRACT

The synthesis of ligand L based on a 2,6-bis[(N,N-bis(methylene phosphonic acid)aminomethyl] pyridine scaffold is described. Potentiometry combined with UV-Vis absorption spectrophotometric titrations were used to determine the protonation constants of the ligand and the stability constants of its corresponding Cu(II), Ni(II), Zn(II) and Ga(III) cations (0.1 M NaClO(4), 25.0 °C). The physico-chemical approach revealed very large stability constants for Cu(II) complexation (logK(CuL) = 22.71(7)) reflected in a very high pCu(II) value of ∼ 15.5 (pH = 7.4, [L](tot) = 10(-5) M, [Cu](tot) = 10(-6) M), close to those measured for the strong methylphosphonate functionalized cyclen chelators. Based on a literature survey, a correlation is proposed between the pK values of branched polyamine ligands and their stability constants for Cu(II) complexation, allowing for an estimation of the latter on the basis of the protonation constants of L. Ligand L was also shown to be very selective towards Cu(II) compared to the other cations studied (ΔlogK > 4). UV-Vis spectroscopy and kinetic measurements indicated that the formation of the cupric complexes with L is very fast, which, in combination with all other properties, makes it an excellent non-cyclic target for Cu(II) radiopharmaceutical within the frame of (64)Cu positron emission tomography imaging and radiotherapy.


Subject(s)
Copper/chemistry , Organometallic Compounds/chemistry , Organophosphonates/chemistry , Pyridines/chemistry , Hydrogen-Ion Concentration , Ligands , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...