Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Semin Cell Dev Biol ; 132: 62-73, 2022 12.
Article in English | MEDLINE | ID: mdl-35210137

ABSTRACT

Every time a cell copies its DNA the genetic material is exposed to the acquisition of mutations and genomic alterations that corrupt the information passed on to daughter cells. A tight temporal regulation of DNA replication is necessary to ensure the full copy of the DNA while preventing the appearance of genomic instability. Protein modification by ubiquitin and SUMO constitutes a very complex and versatile system that allows the coordinated control of protein stability, activity and interactome. In chromatin, their action is complemented by the AAA+ ATPase VCP/p97 that recognizes and removes ubiquitylated and SUMOylated factors from specific cellular compartments. The concerted action of the ubiquitin/SUMO system and VCP/p97 determines every step of DNA replication enforcing the ordered activation/inactivation, loading/unloading and stabilization/destabilization of replication factors. Here we analyze the mechanisms used by ubiquitin/SUMO and VCP/p97 to establish molecular timers throughout DNA replication and their relevance in maintaining genome stability. We propose that these PTMs are the main molecular watch of DNA replication from origin recognition to replisome disassembly.


Subject(s)
DNA Replication , Small Ubiquitin-Related Modifier Proteins , Ubiquitin , Humans , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA/metabolism , DNA Repair , DNA Replication/genetics , Genomic Instability , Ubiquitin/metabolism , Sumoylation , Ubiquitination , Small Ubiquitin-Related Modifier Proteins/metabolism
2.
Cell Rep ; 37(2): 109819, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34644576

ABSTRACT

The AAA+ ATPase VCP regulates the extraction of SUMO and ubiquitin-modified DNA replication factors from chromatin. We have previously described that active DNA synthesis is associated with a SUMO-high/ubiquitin-low environment governed by the deubiquitylase USP7. Here, we unveil a functional cooperation between USP7 and VCP in DNA replication, which is conserved from Caenorhabditis elegans to mammals. The role of VCP in chromatin is defined by its cofactor FAF1, which facilitates the extraction of SUMOylated and ubiquitylated proteins that accumulate after the block of DNA replication in the absence of USP7. The inactivation of USP7 and FAF1 is synthetically lethal both in C. elegans and mammalian cells. In addition, USP7 and VCP inhibitors display synergistic toxicity supporting a functional link between deubiquitylation and extraction of chromatin-bound proteins. Our results suggest that USP7 and VCPFAF1 facilitate DNA replication by controlling the balance of SUMO/Ubiquitin-modified DNA replication factors on chromatin.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Chromatin/metabolism , DNA Replication , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitination , Valosin Containing Protein/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Animals, Genetically Modified , Apoptosis Regulatory Proteins/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chromatin/genetics , Endopeptidases/genetics , Endopeptidases/metabolism , Evolution, Molecular , HCT116 Cells , HeLa Cells , Humans , MCF-7 Cells , Sumoylation , Ubiquitin-Specific Peptidase 7/genetics , Valosin Containing Protein/genetics
3.
Int J Mol Sci ; 22(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34445496

ABSTRACT

Post-translational modification of the DNA replication machinery by ubiquitin and SUMO plays key roles in the faithful duplication of the genetic information. Among other functions, ubiquitination and SUMOylation serve as signals for the extraction of factors from chromatin by the AAA ATPase VCP. In addition to the regulation of DNA replication initiation and elongation, we now know that ubiquitination mediates the disassembly of the replisome after DNA replication termination, a process that is essential to preserve genomic stability. Here, we review the recent evidence showing how active DNA replication restricts replisome ubiquitination to prevent the premature disassembly of the DNA replication machinery. Ubiquitination also mediates the removal of the replisome to allow DNA repair. Further, we discuss the interplay between ubiquitin-mediated replisome disassembly and the activation of CDK1 that is required to set up the transition from the S phase to mitosis. We propose the existence of a ubiquitin-CDK1 relay, where the disassembly of terminated replisomes increases CDK1 activity that, in turn, favors the ubiquitination and disassembly of more replisomes. This model has important implications for the mechanism of action of cancer therapies that induce the untimely activation of CDK1, thereby triggering premature replisome disassembly and DNA damage.


Subject(s)
CDC2 Protein Kinase/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitin/metabolism , Animals , DNA Replication , Humans , Mitosis , Protein Processing, Post-Translational
4.
EMBO J ; 40(11): e99692, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33856059

ABSTRACT

Chemical inhibitors of the deubiquitinase USP7 are currently being developed as anticancer agents based on their capacity to stabilize P53. Regardless of this activity, USP7 inhibitors also generate DNA damage in a p53-independent manner. However, the mechanism of this genotoxicity and its contribution to the anticancer effects of USP7 inhibitors are still under debate. Here we show that, surprisingly, even if USP7 inhibitors stop DNA replication, they also induce a widespread activation of CDK1 throughout the cell cycle, which leads to DNA damage and is toxic for mammalian cells. In addition, USP7 interacts with the phosphatase PP2A and supports its active localization in the cytoplasm. Accordingly, inhibition of USP7 or PP2A triggers very similar changes of the phosphoproteome, including a widespread increase in the phosphorylation of CDK1 targets. Importantly, the toxicity of USP7 inhibitors is alleviated by lowering CDK1 activity or by chemical activation of PP2A. Our work reveals that USP7 limits CDK1 activity at all cell cycle stages, providing a novel mechanism that explains the toxicity of USP7 inhibitors through untimely activation of CDK1.


Subject(s)
CDC2 Protein Kinase/metabolism , Cell Cycle , Ubiquitin-Specific Peptidase 7/metabolism , Animals , Cells, Cultured , DNA Damage , HCT116 Cells , Humans , Mice , NIH 3T3 Cells , Protease Inhibitors/toxicity , Protein Phosphatase 2/metabolism , Protein Transport , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors
5.
Cell Mol Life Sci ; 78(8): 4053-4065, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33834259

ABSTRACT

Class I PI3K are heterodimers composed of a p85 regulatory subunit and a p110 catalytic subunit involved in multiple cellular functions. Recently, the catalytic subunit p110ß has emerged as a class I PI3K isoform playing a major role in tumorigenesis. Understanding its regulation is crucial for the control of the PI3K pathway in p110ß-driven cancers. Here we sought to evaluate the putative regulation of p110ß by SUMO. Our data show that p110ß can be modified by SUMO1 and SUMO2 in vitro, in transfected cells and under completely endogenous conditions, supporting the physiological relevance of p110ß SUMOylation. We identify lysine residue 952, located at the activation loop of p110ß, as essential for SUMOylation. SUMOylation of p110ß stabilizes the protein increasing its activation of AKT which promotes cell growth and oncogenic transformation. Finally, we show that the regulatory subunit p85ß counteracts the conjugation of SUMO to p110ß. In summary, our data reveal that SUMO is a novel p110ß interacting partner with a positive effect on the activation of the PI3K pathway.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/metabolism , Sumoylation , Animals , Catalytic Domain , Class Ia Phosphatidylinositol 3-Kinase/chemistry , Enzyme Activation , Enzyme Stability , HEK293 Cells , Humans , Mice , NIH 3T3 Cells , PC-3 Cells , Signal Transduction
6.
Nat Rev Cancer ; 18(9): 586-595, 2018 09.
Article in English | MEDLINE | ID: mdl-29899559

ABSTRACT

The chemical treatment of cancer started with the realization that DNA damaging agents such as mustard gas present notable antitumoural properties. Consequently, early drug development focused on genotoxic chemicals, some of which are still widely used in the clinic. However, the efficacy of such therapies is often limited by the side effects of these drugs on healthy cells. A refinement to this approach is to use compounds that can exploit the presence of DNA damage in cancer cells. Given that replication stress (RS) is a major source of genomic instability in cancer, targeting the RS-response kinase ataxia telangiectasia and Rad3-related protein (ATR) has emerged as a promising alternative. With ATR inhibitors now entering clinical trials, we here revisit the biology behind this strategy and discuss potential biomarkers that could be used for a better selection of patients who respond to therapy.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Damage , Drug Development , Genomic Instability , Humans , Indoles , Isoxazoles/therapeutic use , Molecular Targeted Therapy , Morpholines , Neoplasms/genetics , Nitroso Compounds/therapeutic use , Oxazines/therapeutic use , Pyrazines/therapeutic use , Pyrimidines/therapeutic use , Quinolines/therapeutic use , Sulfonamides , Sulfoxides/therapeutic use
7.
Genes Dev ; 32(7-8): 568-576, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29650524

ABSTRACT

MEK inhibition in combination with a glycogen synthase kinase-3ß (GSK3ß) inhibitor, referred as the 2i condition, favors pluripotency in embryonic stem cells (ESCs). However, the mechanisms by which the 2i condition limits ESC differentiation and whether RAS proteins are involved in this phenomenon remain poorly understood. Here we show that RAS nullyzygosity reduces the growth of mouse ESCs (mESCs) and prohibits their differentiation. Upon RAS deficiency or MEK inhibition, ERF (E twenty-six 2 [Ets2]-repressive factor), a transcriptional repressor from the ETS domain family, translocates to the nucleus, where it binds to the enhancers of pluripotency factors and key RAS targets. Remarkably, deletion of Erf rescues the proliferative defects of RAS-devoid mESCs and restores their capacity to differentiate. Furthermore, we show that Erf loss enables the development of RAS nullyzygous teratomas. In summary, this work reveals an essential role for RAS proteins in pluripotency and identifies ERF as a key mediator of the response to RAS/MEK/ERK inhibition in mESCs.


Subject(s)
Embryonic Stem Cells/cytology , Genes, ras , Repressor Proteins/physiology , Animals , Cell Differentiation , Cell Line , Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic , Gene Deletion , Mice , Mice, Nude , Repressor Proteins/genetics , Repressor Proteins/metabolism , Teratoma/genetics
9.
Biol Chem ; 398(3): 359-371, 2017 03.
Article in English | MEDLINE | ID: mdl-27676605

ABSTRACT

Annexin A13 is the founder member of the vertebrate family of annexins, which are comprised of a tetrad of unique conserved domains responsible for calcium-dependent binding to membranes. Its expression is restricted to epithelial intestinal and kidney cells. Alternative splicing in the N-terminal region generates two isoforms, A13a and A13b, differing in a deletion of 41 residues in the former. We have confirmed the expression of both isoforms in human colon adenocarcinoma cells at the mRNA and protein levels. We have cloned, expressed, and purified human annexin A13a for the first time to analyze its structural characteristics. Its secondary structure and thermal stability differs greatly from the A13b isoform. The only tryptophan residue (Trp186) is buried in the protein core in the absence of calcium but is exposed to the solvent after calcium binding even though circular dichroism spectra are quite similar. Non-myristoylated annexin A13a binds in a calcium-dependent manner to acidic phospholipids but not to neutral or raft-like liposomes. Calcium requirements for binding to phosphatidylserine are around 6-fold lower than those required by the A13b isoform. This fact could account for the different subcellular localization of both annexins as binding to basolateral membranes seems to be calcium-dependent and myristoylation-independent.

10.
Bioessays ; 38(12): 1209-1217, 2016 12.
Article in English | MEDLINE | ID: mdl-27667742

ABSTRACT

Post-translational modifications regulate each step of DNA replication to ensure the faithful transmission of genetic information. In this context, we recently showed that deubiquitination of SUMO2/3 and SUMOylated proteins by USP7 helps to create a SUMO-rich and ubiquitin-low environment around replisomes that is necessary to maintain the activity of replication forks and for new origin firing. We propose that a two-flag system mediates the collective concentration of factors at sites of DNA replication, whereby SUMO and Ubiquitinated-SUMO would constitute "stay" or "go" signals respectively for replisome and accessory factors. We here discuss the findings that led to this model, which have implications for the potential use of USP7 inhibitors as anticancer agents.


Subject(s)
DNA Replication , Small Ubiquitin-Related Modifier Proteins , Ubiquitin , Animals , Eukaryota/genetics , Eukaryota/metabolism , Humans , Sumoylation , Ubiquitination
11.
Oncotarget ; 7(37): 58759-58767, 2016 Sep 13.
Article in English | MEDLINE | ID: mdl-27577084

ABSTRACT

Ewing sarcomas (ES) are pediatric bone tumors that arise from a driver translocation, most frequently EWS/FLI1. Current ES treatment involves DNA damaging agents, yet the basis for the sensitivity to these therapies remains unknown. Oncogene-induced replication stress (RS) is a known source of endogenous DNA damage in cancer, which is suppressed by ATR and CHK1 kinases. We here show that ES suffer from high endogenous levels of RS, rendering them particularly dependent on the ATR pathway. Accordingly, two independent ATR inhibitors show in vitro toxicity in ES cell lines as well as in vivo efficacy in ES xenografts as single agents. Expression of EWS/FLI1 or EWS/ERG oncogenic translocations sensitizes non-ES cells to ATR inhibitors. Our data shed light onto the sensitivity of ES to genotoxic agents, and identify ATR inhibitors as a potential therapy for Ewing Sarcomas.


Subject(s)
Antineoplastic Agents/therapeutic use , Bone Neoplasms/metabolism , Sarcoma, Ewing/metabolism , Animals , Apoptosis , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Cell Line, Tumor , DNA Damage , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, SCID , RNA, Small Interfering/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/genetics , Signal Transduction , Xenograft Model Antitumor Assays
12.
Mol Cell ; 63(5): 877-83, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27524497

ABSTRACT

The Pold3 gene encodes a subunit of the Polδ DNA polymerase complex. Pold3 orthologs are not essential in Saccharomyces cerevisiae or chicken DT40 cells, but the Schizosaccharomyces pombe ortholog is essential. POLD3 also has a specialized role in the repair of broken replication forks, suggesting that POLD3 activity could be particularly relevant for cancer cells enduring high levels of DNA replication stress. We report here that POLD3 is essential for mouse development and is also required for viability in adult animals. Strikingly, even Pold3(+/-) mice were born at sub-Mendelian ratios, and, of those born, some presented hydrocephaly and had a reduced lifespan. In cells, POLD3 deficiency led to replication stress and cell death, which were aggravated by the expression of activated oncogenes. Finally, we show that Pold3 deletion destabilizes all members of the Polδ complex, explaining its major role in DNA replication and the severe impact of its deficiency.


Subject(s)
DNA Polymerase III/deficiency , DNA Replication , Haploinsufficiency , Hydrocephalus/genetics , Longevity/genetics , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Brain/growth & development , Brain/metabolism , Brain/pathology , Cell Death , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , DNA Damage , DNA Polymerase III/genetics , Gene Expression Regulation, Developmental , Histones/genetics , Histones/metabolism , Homozygote , Hydrocephalus/metabolism , Hydrocephalus/mortality , Hydrocephalus/pathology , Lung/growth & development , Lung/metabolism , Lung/pathology , Mice , Mice, Knockout , Phosphorylation , Survival Analysis
13.
Nat Struct Mol Biol ; 23(4): 270-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26950370

ABSTRACT

Post-translational modification of proteins by ubiquitin (Ub) and Ub-like modifiers regulates DNA replication. We have previously shown that chromatin around replisomes is rich in SUMO and poor in Ub, whereas mature chromatin exhibits an opposite pattern. How this SUMO-rich, Ub-poor environment is maintained at sites of DNA replication in mammalian cells remains unexplored. Here we identify USP7 as a replisome-enriched SUMO deubiquitinase that is essential for DNA replication. By acting on SUMO and SUMOylated proteins, USP7 counteracts their ubiquitination. Inhibition or genetic deletion of USP7 leads to the accumulation of Ub on SUMOylated proteins, which are displaced away from replisomes. Our findings provide a model explaining the differential accumulation of SUMO and Ub at replication forks and identify an essential role of USP7 in DNA replication that should be considered in the development of USP7 inhibitors as anticancer agents.


Subject(s)
DNA Replication , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Specific Proteases/metabolism , DNA Damage , DNA Repair , HCT116 Cells , HeLa Cells , Humans , Models, Molecular , Small Ubiquitin-Related Modifier Proteins/analysis , Sumoylation , Ubiquitin Thiolesterase/analysis , Ubiquitin-Specific Peptidase 7 , Ubiquitin-Specific Proteases/analysis , Ubiquitination
14.
EMBO J ; 34(21): 2604-19, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26443207

ABSTRACT

The SMC5/6 complex is the least understood of SMC complexes. In yeast, smc5/6 mutants phenocopy mutations in sgs1, the BLM ortholog that is deficient in Bloom's syndrome (BS). We here show that NSMCE2 (Mms21, in Saccharomyces cerevisiae), an essential SUMO ligase of the SMC5/6 complex, suppresses cancer and aging in mice. Surprisingly, a mutation that compromises NSMCE2-dependent SUMOylation does not have a detectable impact on murine lifespan. In contrast, NSMCE2 deletion in adult mice leads to pathologies resembling those found in patients of BS. Moreover, and whereas NSMCE2 deletion does not have a detectable impact on DNA replication, NSMCE2-deficient cells also present the cellular hallmarks of BS such as increased recombination rates and an accumulation of micronuclei. Despite the similarities, NSMCE2 and BLM foci do not colocalize and concomitant deletion of Blm and Nsmce2 in B lymphocytes further increases recombination rates and is synthetic lethal due to severe chromosome mis-segregation. Our work reveals that SUMO- and BLM-independent activities of NSMCE2 limit recombination and facilitate segregation; functions of the SMC5/6 complex that are necessary to prevent cancer and aging in mice.


Subject(s)
Aging , Neoplasms/enzymology , Ubiquitin-Protein Ligases/physiology , Animals , B-Lymphocytes/enzymology , Base Sequence , Cells, Cultured , Chromosome Segregation , DNA Breaks, Double-Stranded , DNA Mutational Analysis , DNA Replication , Female , Haploinsufficiency , Humans , Ligases , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Protein Transport , RecQ Helicases/metabolism , Sumoylation , Tumor Suppressor Proteins/physiology
15.
Mol Cell Biol ; 35(17): 2910-7, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26077802

ABSTRACT

The ribonucleotide reductase (RNR) complex, composed of a catalytic subunit (RRM1) and a regulatory subunit (RRM2), is thought to be a rate-limiting enzymatic complex for the production of nucleotides. In humans, the Rrm1 gene lies at 11p15.5, a tumor suppressor region, and RRM1 expression in cancer has been shown to predict responses to chemotherapy. Nevertheless, whether RRM1 is essential in mammalian cells and what the effects of its haploinsufficiency are remain unknown. To model RNR function in mice we used a mutation previously described in Saccharomyces cerevisiae (Rnr1-W688G) which, despite being viable, leads to increased interaction of the RNR complex with its allosteric inhibitor Sml1. In contrast to yeast, homozygous mutant mice carrying the Rrm1 mutation (Rrm1(WG/WG)) are not viable, even at the earliest embryonic stages. Proteomic analyses failed to identify proteins that specifically bind to the mutant RRM1 but revealed that, in mammals, the mutation prevents RRM1 binding to RRM2. Despite the impact of the mutation, Rrm1(WG/+) mice and cells presented no obvious phenotype, suggesting that the RRM1 protein exists in excess. Our work reveals that binding of RRM1 to RRM2 is essential for mammalian cells and provides the first loss-of-function model of the RNR complex for genetic studies.


Subject(s)
Embryonic Development/genetics , Ribonucleoside Diphosphate Reductase/metabolism , Ribonucleotide Reductases/metabolism , Animals , Cell Line , Embryonic Stem Cells/cytology , Gene Knock-In Techniques , HEK293 Cells , Histones/metabolism , Humans , Mice , Mice, Inbred C57BL , Mucins/metabolism , Muscle Proteins/metabolism , Mutation/genetics , Peptides/metabolism , Protein Binding/genetics , Ribonucleoside Diphosphate Reductase/antagonists & inhibitors , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleotide Reductases/antagonists & inhibitors , Ribonucleotide Reductases/genetics , Trefoil Factor-2
16.
Mol Cell Biol ; 35(7): 1157-68, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25605328

ABSTRACT

USP7 is a protein deubiquitinase with an essential role in development. Here, we provide evidence that USP7 regulates the activity of Polycomb repressive complex 1 (PRC1) in coordination with SCML2. There are six versions of PRC1 defined by the association of one of the PCGF homologues (PCGF1 to PCGF6) with the common catalytic subunit RING1B. First, we show that SCML2, a Polycomb group protein that associates with PRC1.2 (containing PCGF2/MEL18) and PRC1.4 (containing PCGF4/BMI1), modulates the localization of USP7 and bridges USP7 with PRC1.4, allowing for the stabilization of BMI1. Chromatin immunoprecipitation (ChIP) experiments demonstrate that USP7 is found at SCML2 and BMI1 target genes. Second, inhibition of USP7 leads to a reduction in the level of ubiquitinated histone H2A (H2Aub), the catalytic product of PRC1 and key for its repressive activity. USP7 regulates the posttranslational status of RING1B and BMI1, a specific component of PRC1.4. Thus, not only does USP7 stabilize PRC1 components, its catalytic activity is also necessary to maintain a functional PRC1, thereby ensuring appropriate levels of repressive H2Aub.


Subject(s)
Polycomb Repressive Complex 1/metabolism , Polycomb-Group Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Cell Line , Humans , Protein Interaction Maps , Ubiquitin-Specific Peptidase 7
17.
Exp Cell Res ; 329(1): 26-34, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25257608

ABSTRACT

Problems arising during DNA replication require the activation of the ATR-CHK1 pathway to ensure the stabilization and repair of the forks, and to prevent the entry into mitosis with unreplicated genomes. Whereas the pathway is essential at the cellular level, limiting its activity is particularly detrimental for some cancer cells. Here we review the links between replication stress (RS) and cancer, which provide a rationale for the use of ATR and Chk1 inhibitors in chemotherapy. First, we describe how the activation of oncogene-induced RS promotes genome rearrangements and chromosome instability, both of which could potentially fuel carcinogenesis. Next, we review the various pathways that contribute to the suppression of RS, and how mutations in these components lead to increased cancer incidence and/or accelerated ageing. Finally, we summarize the evidence showing that tumors with high levels of RS are dependent on a proficient RS-response, and therefore vulnerable to ATR or Chk1 inhibitors.


Subject(s)
Chromosomal Instability , DNA Replication , Gene Rearrangement , Neoplasms/epidemiology , Neoplasms/genetics , Humans , Signal Transduction
18.
Elife ; 3: e02637, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24986859

ABSTRACT

Polycomb repressive complex-1 (PRC1) is essential for the epigenetic regulation of gene expression. SCML2 is a mammalian homolog of Drosophila SCM, a Polycomb-group protein that associates with PRC1. In this study, we show that SCML2A, an SCML2 isoform tightly associated to chromatin, contributes to PRC1 localization and also directly enforces repression of certain Polycomb target genes. SCML2A binds to PRC1 via its SPM domain and interacts with ncRNAs through a novel RNA-binding region (RBR). Targeting of SCML2A to chromatin involves the coordinated action of the MBT domains, RNA binding, and interaction with PRC1 through the SPM domain. Deletion of the RBR reduces the occupancy of SCML2A at target genes and overexpression of a mutant SCML2A lacking the RBR causes defects in PRC1 recruitment. These observations point to a role for ncRNAs in regulating SCML2 function and suggest that SCML2 participates in the epigenetic control of transcription directly and in cooperation with PRC1.DOI: http://dx.doi.org/10.7554/eLife.02637.001.


Subject(s)
Chromatin/metabolism , Polycomb-Group Proteins/metabolism , RNA-Binding Proteins/metabolism , RNA/metabolism , Repressor Proteins/metabolism , Cell Nucleus/metabolism , Genome, Human , HeLa Cells , Humans , Polycomb Repressive Complex 1/metabolism , Protein Binding , Protein Structure, Tertiary , Protein Transport , RNA, Untranslated/metabolism , Sequence Analysis, RNA , Transcription, Genetic
19.
PLoS Biol ; 11(12): e1001737, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24358021

ABSTRACT

Polycomb group (PcG) proteins are transcriptional repressors of genes involved in development and differentiation, and also maintain repression of key genes involved in the cell cycle, indirectly regulating cell proliferation. The human SCML2 gene, a mammalian homologue of the Drosophila PcG protein SCM, encodes two protein isoforms: SCML2A that is bound to chromatin and SCML2B that is predominantly nucleoplasmic. Here, we purified SCML2B and found that it forms a stable complex with CDK/CYCLIN/p21 and p27, enhancing the inhibitory effect of p21/p27. SCML2B participates in the G1/S checkpoint by stabilizing p21 and favoring its interaction with CDK2/CYCE, resulting in decreased kinase activity and inhibited progression through G1. In turn, CDK/CYCLIN complexes phosphorylate SCML2, and the interaction of SCML2B with CDK2 is regulated through the cell cycle. These findings highlight a direct crosstalk between the Polycomb system of cellular memory and the cell-cycle machinery in mammals.


Subject(s)
Cell Cycle/physiology , Cyclin-Dependent Kinase Inhibitor p21/physiology , Cyclin-Dependent Kinases/physiology , Cyclins/physiology , Drosophila Proteins/physiology , Polycomb-Group Proteins/physiology , Animals , Drosophila melanogaster/physiology , G1 Phase/physiology , HeLa Cells , Humans , Phosphorylation
20.
Biochim Biophys Acta ; 1833(9): 2045-56, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23651923

ABSTRACT

4F2hc is a type-II glycoprotein whose covalent-bound association with one of several described light chains yields a heterodimer mainly involved in large neutral amino acid transport. Likewise, it is well known that the heavy chain interacts with ß-integrins mediating integrin-dependent events such as survival, proliferation, migration and even transformation. 4F2hc is a ubiquitous protein whose overexpression has been related to tumor development and progression. Stable silencing of 4F2hc in HeLa cells using an artificial miRNA impairs in vivo tumorigenicity and leads to an ineffective proliferation response to mitogens. 4F2hc colocalizes with ß1-integrins and CD147, but this interaction does not occur in lipid rafts in HeLa cells. Moreover, silenced cells present defects in integrin- (FAK, Akt and ERK1/2) and hypoxia-dependent signaling, and reduced expression/activity of MMP-2. These alterations seem to be dependent on the inappropriate formation of CD147/4F2hc/ß1-integrin heterocomplexes on the cell surface, arising when CD147 cannot interact with 4F2hc. Although extracellular galectin-3 accumulates due to the decrease in MMP-2 activity, galectin-3 signaling events are blocked due to an impaired interaction with 4F2hc, inducing an increased degradation of ß-catenin. Furthermore, cell motility is compromised after protein silencing, suggesting that 4F2hc is related to tumor invasion by facilitating cell motility. Therefore, here we propose a molecular mechanism by which 4F2hc participates in tumor progression, favoring first steps of epithelial-mesenchymal transition by inhibition of ß-catenin proteasomal degradation through Akt/GSK-3ß signaling and enabling cell motility.


Subject(s)
Fusion Regulatory Protein 1, Heavy Chain/biosynthesis , Galectin 3/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Gene Silencing , MAP Kinase Signaling System , Matrix Metalloproteinase 2/biosynthesis , Neoplasms, Experimental/metabolism , beta Catenin/metabolism , Animals , Basigin/genetics , Basigin/metabolism , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Fusion Regulatory Protein 1, Heavy Chain/genetics , Galectin 3/genetics , HeLa Cells , Humans , Integrin beta1/genetics , Integrin beta1/metabolism , Matrix Metalloproteinase 2/genetics , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Neoplasm Transplantation , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Transplantation, Heterologous , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...