Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 269: 116307, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38460269

ABSTRACT

The antitumoral activity of hydroxymethylene bisphosphonates (HMBP) such as alendronate or zoledronate is hampered by their exceptional bone-binding properties and their short plasmatic half-life which preclude their accumulation in non-skeletal tumors. In this context, the use of lipophilic prodrugs represents a simple and straightforward strategy to enhance the biodistribution of bisphosphonates in these tissues. We describe in this article the synthesis of light-responsive prodrugs of HMBP alendronate. These prodrugs include lipophilic photo-removable nitroveratryl groups which partially mask the highly polar alendronate HMBP scaffold. Photo-responsive prodrugs of alendronate are stable in physiological conditions and display reduced toxicity compared to alendronate against MDA-MB-231 cancer cells. However, the antiproliferative effect of these prodrugs is efficiently restored after cleavage of their nitroveratryl groups upon exposure to UV light. In addition, substitution of alendronate with such photo-responsive substituents drastically reduces its bone-binding properties, thereby potentially improving its biodistribution in soft tissues after i.v. administration. The development of such lipophilic photo-responsive prodrugs is a promising approach to fully exploit the anticancer effect of HMBPs on non-skeletal tumors.


Subject(s)
Neoplasms , Prodrugs , Humans , Alendronate/pharmacology , Alendronate/chemistry , Prodrugs/pharmacology , Tissue Distribution , Diphosphonates/pharmacology , Diphosphonates/chemistry
2.
Molecules ; 28(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687054

ABSTRACT

Among phosphorylated derivatives, phosphinates occupy a prominent place due to their ability to be bioisosteres of phosphates and carboxylates. These properties imply the necessity to develop efficient methodologies leading to phosphinate scaffolds. In recent years, our team has explored the nucleophilic potential of silylated phosphonite towards various electrophiles. In this paper, we propose to extend our study to other electrophiles. We describe here the implementation of a cascade reaction between (trimethylsilyl)imidates and hypophosphorous acid mediated by a Lewis acid allowing the synthesis of aminomethylenebisphosphinate derivatives. The present study focuses on methodological development including a careful NMR monitoring of the cascade reaction. The optimized conditions were successfully applied to various aliphatic and aromatic substituted (trimethylsilyl)imidates, leading to the corresponding AMBPi in moderate to good yields.

3.
J Phys Chem B ; 126(48): 10055-10068, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36417492

ABSTRACT

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and the hydroxyl radical (•OH) have specific functions in biological processes, while their uncontrolled production and reactivity are known to be determining factors in pathophysiology. Methionine (Met) residues act as endogenous antioxidants, when they are oxidized into methionine sulfoxide (MetSO), thus depleting ROS and protecting the protein. We employed tandem mass spectrometry combined with IR multiple photon dissociation spectroscopy to study the oxidation induced by OH radicals produced by γ radiolysis on model cyclic dipeptides c(LMetLMet), c(LMetDMet), and c(GlyMet). Our aim was to characterize the geometries of the oxidized peptides in the gas phase and to understand the relationship between the structure of the 2-center 3-electron (2c-3e) free radical formed in the first step of the oxidation process and the final compound. Density functional theory calculations were performed to characterize the lowest energy structures of the final product of oxidation and to interpret the IR spectra. Collision-induced dissociation tandem mass spectrometry (CID-MS2) experiments of oxidized c(LMetLMet)H+ and c(LMetDMet)H+ led to the loss of one or two oxidized sulfenic acid molecules, indicating that the addition of one or two oxygen atoms occurs on the sulfur atom of both methionine side chains and no sulfone formation was observed. The CID-MS2 fragmentation mass spectrum of oxidized c(GlyMet)H+ showed only the loss of one oxidized sulfenic acid molecule. Thus, the final products of oxidation are the same regardless of the structure of the precursor sulfur-centered free radical.


Subject(s)
Dipeptides , Electrons , Sulfenic Acids , Hydrogen Peroxide , Methionine , Spectrum Analysis , Sulfur
5.
Bioorg Chem ; 122: 105723, 2022 05.
Article in English | MEDLINE | ID: mdl-35278778

ABSTRACT

Phosphoramidates obtained according to the ProTide strategy are known for their ability to increase the biological activity of various nucleosides. A series of such prodrugs of SRO-91, a non-natural ribofuranosyl-1,2,3-triazole C-nucleoside obtained by a synthetic sequence involving an indium mediated alkynylation and a Huisgen cycloaddition, was prepared and the antitumor activity on 3 strains of tumor cells was investigated. Two compounds 9a and 9c exhibited interesting cell proliferative inhibitions (IC50 = 2.5-12.1 µM) on two cell lines (pancreas and lung). Moreover, concerning the antiviral activity, another phosphoramidate 14 bearing a different aryl masking group exhibited an IC50 of 5 µM on Crimean-Congo Hemorrhagic Fever orthonairovirus. In both cases, free SRO-91 presented no activity on these cell lines.


Subject(s)
Nucleosides , Prodrugs , Antiviral Agents/pharmacology , Cell Line , Prodrugs/pharmacology , Ribavirin/pharmacology
6.
Molecules ; 26(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34946699

ABSTRACT

This paper reports on the synthesis of new hydroxymethylene-(phosphinyl)phosphonates (HMPPs). A methodology has been developed to propose an optimized one-pot procedure without any intermediate purifications. Various aliphatic and (hetero)aromatic HMPPs were synthesized in good to excellent yields (53-98%) and the influence of electron withdrawing/donating group substitution on aromatic substrates was studied. In addition, the one-pot synthesis of HMPP was monitored by 31P NMR spectroscopy, allowing effective control of the end of the reaction and identification of all phosphorylated intermediate species, which enabled us to propose a reaction mechanism. Optimized experimental conditions were applied to the preparation of biological relevant aminoalkyl-HMPPs. A preliminary study of the complexation to hydroxyapatite (bone matrix) was carried out in order to verify its lower affinity towards bone compared to bisphosphonate molecules. Moreover, in vitro anti-tumor activity study revealed encouraging antiproliferative activities on three human cancer cell lines (breast, pancreas and lung).


Subject(s)
Antineoplastic Agents , Neoplasms/drug therapy , Organophosphonates , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Humans , Neoplasms/metabolism , Organophosphonates/chemical synthesis , Organophosphonates/chemistry , Organophosphonates/pharmacology
7.
Eur J Med Chem ; 214: 113241, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33571830

ABSTRACT

The synthesis of a new set of triazole bisphosphonates 8a-d and 9a-d presenting an alkyl or phenyl substituent at the C-4 or C-5 position of the triazole ring is described. These compounds have been evaluated for their antiproliferative activity against MIA PaCa-2 (pancreas), MDA-MB-231 (breast) and A549 (lung) human tumor cell lines. 4-hexyl- and 4-octyltriazole bisphosphonates 8b-c both displayed remarkable antiproliferative activities with IC50 values in the micromolar range (0.75-2.4 µM) and were approximately 4 to 12-fold more potent than zoledronate. Moreover, compound 8b inhibits geranylgeranyl pyrophosphate biosynthesis in MIA PaCa-2 cells which ultimately led to tumor cells death.


Subject(s)
Antineoplastic Agents/pharmacology , Diphosphonates/pharmacology , Terpenes/antagonists & inhibitors , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Diphosphonates/chemical synthesis , Diphosphonates/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Terpenes/metabolism , Triazoles/chemical synthesis , Triazoles/chemistry , Tumor Cells, Cultured
8.
Nanoscale ; 13(6): 3767-3781, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33555278

ABSTRACT

Neuroinflammation is a process common to several brain pathologies. Despites its medical relevance, it still remains poorly understood; there is therefore a need to develop new in vivo preclinical imaging strategies to monitor inflammatory processes longitudinally. We here present the development of a hybrid imaging nanoprobe named NP3, that was specifically designed to get internalized by phagocytic cells and imaged in vivo with MRI and bi-photon microscopy. NP3 is composed of a 16 nm core of gadolinium fluoride (GdF3), coated with bisphosphonate polyethylene glycol (PEG) and functionalized with a Lemke-type fluorophore. It has a hydrodynamic diameter of 28 ± 8 nm and a zeta potential of -42 ± 6 mV. The MR relaxivity ratio at 7 T is r1/r2 = 20; therefore, NP3 is well suited as a T2/T2* contrast agent. In vitro cytotoxicity assessments performed on four human cell lines revealed no toxic effects of NP3. In addition, NP3 is internalized by macrophages in vitro without inducing inflammation or cytotoxicity. In vivo, uptake of NP3 has been observed in the spleen and the liver. NP3 has a prolonged vascular remanence, which is an advantage for macrophage uptake in vivo. The proof-of-concept that NP3 may be used as a contrast agent targeting phagocytic cells is provided in an animal model of ischemic stroke in transgenic CX3CR1-GFP/+ mice using three complementary imaging modalities: MRI, intravital two-photon microscopy and phase contrast imaging with synchrotron X-rays. In summary, NP3 is a promising preclinical tool for the multiscale and multimodal investigation of neuroinflammation.


Subject(s)
Contrast Media , Gadolinium , Animals , Magnetic Resonance Imaging , Multimodal Imaging , Polyethylene Glycols
9.
Nanomaterials (Basel) ; 10(9)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32847105

ABSTRACT

We present a 1H Nuclear Magnetic Resonance (NMR) relaxometry experimental investigation of two series of magnetic nanoparticles, constituted of a maghemite core with a mean diameter dTEM = 17 ± 2.5 nm and 8 ± 0.4 nm, respectively, and coated with four different negative polyelectrolytes. A full structural, morpho-dimensional and magnetic characterization was performed by means of Transmission Electron Microscopy, Atomic Force Microscopy and DC magnetometry. The magnetization curves showed that the investigated nanoparticles displayed a different approach to the saturation depending on the coatings, the less steep ones being those of the two samples coated with P(MAA-stat-MAPEG), suggesting the possibility of slightly different local magnetic disorders induced by the presence of the various polyelectrolytes on the particles' surface. For each series, 1H NMR relaxivities were found to depend very slightly on the surface coating. We observed a higher transverse nuclear relaxivity, r2, at all investigated frequencies (10 kHz ≤ νL ≤ 60 MHz) for the larger diameter series, and a very different frequency behavior for the longitudinal nuclear relaxivity, r1, between the two series. In particular, the first one (dTEM = 17 nm) displayed an anomalous increase of r1 toward the lowest frequencies, possibly due to high magnetic anisotropy together with spin disorder effects. The other series (dTEM = 8 nm) displayed a r1 vs. νL behavior that can be described by the Roch's heuristic model. The fitting procedure provided the distance of the minimum approach and the value of the Néel reversal time (τ ≈ 3.5 ÷ 3.9·10-9 s) at room temperature, confirming the superparamagnetic nature of these compounds.

10.
J Org Chem ; 85(22): 14559-14569, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32597178

ABSTRACT

An easily handled one-pot synthetic procedure was previously developed for the synthesis of bisphosphinates starting from acyl chlorides. Herein, other trivalent derivatives as acid anhydrides and activated esters were tested to form various bisphosphinates. This modulation of the reactivity can be controlled according to the nature of the acid derivative for the use of sensitive and functionalized substrates.

11.
Eur J Med Chem ; 188: 112009, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31883488

ABSTRACT

SRO-91 is a non-natural ribofuranosyl-1,2,3-triazole C-nucleoside obtained by a synthetic sequence involving a C-alkynyl glycosylation mediated by metallic indium and a Huisgen cycloaddition for the construction of the triazole. Its structure is close to the one of ribavirin, a drug presenting a broad-spectrum against viral infections. SRO-91 antitumor activities were investigated on 9 strains of tumor cells and IC50 of the order of 1 µM were obtained on A431 epidermoid carcinoma cells and B16F10 skin melanoma cells. In addition, studies of ovarian tumor cell inhibitions show an interesting activity in regard to the need for new drugs for this pathology. Finally, cytotoxicity and mouse toxicity studies reveal a favorable therapeutic index for SRO-91.


Subject(s)
Antineoplastic Agents/pharmacology , Ribavirin/analogs & derivatives , Ribavirin/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , Cell Line, Transformed , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Male , Mice , Ribavirin/toxicity
12.
Langmuir ; 35(49): 16256-16265, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31696717

ABSTRACT

The design of high-performance energy-converting materials is an essential step for the development of sensors, but the production of the bulk materials currently used remains costly and difficult. Therefore, a different approach based on the self-assembly of nanoparticles has been explored. We report on the preparation by solvothermal synthesis of highly crystalline CeF3 nanodiscs. Their surface modification by bisphosphonate ligands led to stable, highly concentrated, colloidal suspensions in water. Despite the low aspect ratio of the nanodiscs (∼6), a liquid-crystalline nematic phase spontaneously appeared in these colloidal suspensions. Thanks to the paramagnetic character of the nanodiscs, the nematic phase was easily aligned by a weak (0.5 T) magnetic field, which provides a simple and convenient way of orienting all of the nanodiscs in suspension in the same direction. Moreover, the more dilute, isotropic, suspensions displayed strong (electric and magnetic) field-induced orientation of the nanodiscs (Kerr and Cotton-Mouton effects), with fast enough response times to make them suitable for use in electro-optic devices. Furthermore, an emission study showed a direct relation between the luminescence intensity and magnetic-field-induced orientation of the colloids. Finally, with their fast radiative recombination decay rates, the nanodiscs show luminescence properties that compare quite favorably with those of bulk CeF3. Therefore, these CeF3 nanodiscs are very promising building blocks for the development and processing of photosensitive materials for sensor applications.

13.
Org Biomol Chem ; 16(38): 6969-6979, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30229797

ABSTRACT

A practical generalisable procedure to synthesize hydroxymethylene H-bisphosphinates has been optimised. Unlike previous reports, numerous alkyl (including an alendronate bisphosphinate analogue) or (hetero)aryl compounds were rapidly obtained in satisfactory to excellent yields. A side product could have been identified as a phosphino-phosphonate isomer and plausible mechanistic pathways are proposed here. Moreover to check the literature data, a pKa value study was also performed.

14.
ACS Appl Bio Mater ; 1(2): 462-472, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-35016367

ABSTRACT

Real time in vivo detection of Amyloid ß (Aß) deposits at an early stage may lead to faster and more conclusive diagnosis of Alzheimer's disease (AD) and can facilitate the follow up of the effect of therapeutic interventions. In this work, the capability of new hybrid nanomaterials to target and detect Aß aggregates using magnetic resonance (MRI) and fluorescence imaging is demonstrated. These smart contrast agents contain paramagnetic nanoparticles surrounded by luminescent conjugated oligothiophenes (LCOs) known to selectively bind to Aß aggregates, with emission spectra strongly dependent on their conformations, opening the possibilities for several fluorescence imaging modes for AD diagnostics. Relaxivity is evaluated in vitro and ex vivo. The capability of these contrast media to link to Aß fibrils in stained sections is revealed using transmission electron microscopy and fluorescence microscopy. Preliminary in vivo experiments show the ability of the contrast agent to diffuse through the blood-brain barrier of model animals and specifically stain amyloid deposits.

15.
J Colloid Interface Sci ; 513: 205-213, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29153714

ABSTRACT

The use of phosphonate ligands to modify the nanoparticle (NPs) surface has attracted a strong interest in the last years for the design of highly functional hybrid materials. Here, we applied a methodology to synthesize bisphosphonates having functionalized PEG side chains with a specific length in order to design a novel class of hybrid nanomaterials composed by tetraphosphonate-complex-gold COOH-terminated PEG-coated NPs (Bis-PO-PEG-AuNPs). The synthetic approach consist in three steps: (1) Complexation between new phosphonate ligands (Bis PO) and tetrachloroauric acid (HAuCl4) to form gold clusters; (2) adsorption of COOH-terminated PEG molecules (PEG) onto Bis PO-Au complex; (3) reduction of metal ions in that vicinity, growth of gold particles and colloidal stabilization. The obtained snow-shape-like hybrid nanoparticles, have been characterized by ultra-violet/visible, Raman spectroscopies, and electron microscopy imaging, involving their optical properties and photothermal activity in pancreatic adenocarcinoma cancer cells (PDAC).


Subject(s)
Carcinoma, Pancreatic Ductal/therapy , Metal Nanoparticles/administration & dosage , Organophosphorus Compounds/administration & dosage , Pancreatic Neoplasms/therapy , Phototherapy , Polyethylene Glycols/chemistry , Gold/chemistry , Humans , Ligands , Metal Nanoparticles/chemistry , Organophosphorus Compounds/chemistry , Tumor Cells, Cultured
16.
Mol Cancer Res ; 15(10): 1376-1387, 2017 10.
Article in English | MEDLINE | ID: mdl-28634226

ABSTRACT

Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor and accounts for a significant proportion of all primary brain tumors. Median survival after treatment is around 15 months. Remodeling of N-glycans by the N-acetylglucosamine glycosyltransferase (MGAT5) regulates tumoral development. Here, perturbation of MGAT5 enzymatic activity by the small-molecule inhibitor 3-hydroxy-4,5-bis-benzyloxy-6-benzyloxymethyl-2-phenyl2-oxo-2λ5-[1,2]oxaphosphinane (PST3.1a) restrains GBM growth. In cell-based assays, it is demonstrated that PST3.1a alters the ß1,6-GlcNAc N-glycans of GBM-initiating cells (GIC) by inhibiting MGAT5 enzymatic activity, resulting in the inhibition of TGFßR and FAK signaling associated with doublecortin (DCX) upregulation and increase oligodendrocyte lineage transcription factor 2 (OLIG2) expression. PST3.1a thus affects microtubule and microfilament integrity of GBM stem cells, leading to the inhibition of GIC proliferation, migration, invasiveness, and clonogenic capacities. Orthotopic graft models of GIC revealed that PST3.1a treatment leads to a drastic reduction of invasive and proliferative capacity and to an increase in overall survival relative to standard temozolomide therapy. Finally, bioinformatics analyses exposed that PST3.1a cytotoxic activity is positively correlated with the expression of genes of the epithelial-mesenchymal transition (EMT), while the expression of mitochondrial genes correlated negatively with cell sensitivity to the compound. These data demonstrate the relevance of targeting MGAT5, with a novel anti-invasive chemotherapy, to limit glioblastoma stem cell invasion. Mol Cancer Res; 15(10); 1376-87. ©2017 AACR.


Subject(s)
Brain Neoplasms/drug therapy , Cyclic P-Oxides/administration & dosage , Glioblastoma/drug therapy , N-Acetylglucosaminyltransferases/metabolism , Neoplastic Stem Cells/drug effects , Small Molecule Libraries/administration & dosage , Animals , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation/drug effects , Cyclic P-Oxides/pharmacology , Doublecortin Protein , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/metabolism , Humans , Mice , Neoplasm Invasiveness , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Xenograft Model Antitumor Assays
17.
ACS Appl Mater Interfaces ; 9(16): 14242-14257, 2017 Apr 26.
Article in English | MEDLINE | ID: mdl-28379690

ABSTRACT

Controlling the interactions of functional nanostructures with water and biological media represents high challenges in the field of bioimaging applications. Large contrast at low doses, high colloidal stability in physiological conditions, the absence of cell cytotoxicity, and efficient cell internalization represent strong additional needs. To achieve such requirements, we report on high-payload magnetofluorescent architectures made of a shell of superparamagnetic iron oxide nanoparticles tightly anchored around fluorescent organic nanoparticles. Their external coating is simply modulated using anionic polyelectrolytes in a final step to provide efficient magnetic resonance imaging (MRI) and fluorescence imaging of live cells. Various structures of PEGylated polyelectrolytes have been synthesized and investigated, differing from their iron oxide complexing units (carboxylic vs phosphonic acid), their structure (block- or comblike), their hydrophobicity, and their fabrication process [conventional or reversible addition-fragmentation chain transfer (RAFT)-controlled radical polymerization] while keeping the central magnetofluorescent platforms the same. Combined photophysical, magnetic, NMRD, and structural investigations proved the superiority of RAFT polymer coatings containing carboxylate units and a hydrophobic tail to impart the magnetic nanoassemblies (NAs) with enhanced-MRI negative contrast, characterized by a high r2/r1 ratio and a transverse relaxation r2 equal to 21 and 125 s-1 mmol-1 L, respectively, at 60 MHz clinical frequency (∼1.5 T). Thanks to their dual modality, cell internalization of the NAs in mesothelioma cancer cells could be evidenced by both confocal fluorescence microscopy and magnetophoresis. A 72 h follow-up showed efficient uptake after 24 h with no notable cell mortality. These studies again pointed out the distinct behavior of RAFT polyelectrolyte-coated bimodal NAs that internalize at a slower rate with no adverse cytotoxicity. Extension to multicellular tumor cell spheroids that mimic solid tumors revealed the successful internalization of the NAs in the periphery cells, which provides efficient deep-imaging labels thanks to their induced T2* contrast, large emission Stokes shift, and bright dotlike signal, popping out of the strong spheroid autofluorescence.


Subject(s)
Contrast Media/chemistry , Anions , Humans , Magnetic Resonance Imaging , Nanoparticles , Neoplasms , Polyethylene Glycols
18.
Chemistry ; 23(27): 6654-6662, 2017 May 11.
Article in English | MEDLINE | ID: mdl-28301682

ABSTRACT

Enamine catalysis is a widespread activation mode in the field of organocatalysis and is often encountered in bifunctional organocatalysts. We previously described H-Pro-Pro-pAla-OMe as a bifunctional catalyst for Michael addition between aldehydes and aromatic nitroalkenes. Considering that opposite selectivities were observed when compared to H-Pro-Pro-Glu-NH2 , an analogue described by Wennemers, the activation mode of H-Pro-Pro-pAla-OMe was investigated through kinetic, linear effect studies, NMR analyses, and structural modifications. It appeared that only one bifunctional catalyst was involved in the catalytic cycle, by activating aldehyde through an (E)-enamine and nitroalkene through an acidic interaction. A restrained tripeptide structure was optimal in terms of distance and rigidity for better selectivities and fast reaction rates. Transition-state modeling unveiled the particular selectivity of this phosphonopeptide.


Subject(s)
Oligopeptides/chemistry , Phosphorous Acids/chemistry , Aldehydes/chemistry , Alkenes/chemistry , Amino Acid Sequence , Catalysis , Magnetic Resonance Spectroscopy , Molecular Conformation , Nitro Compounds/chemistry , Stereoisomerism , Thermodynamics
19.
Carbohydr Polym ; 156: 285-293, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-27842825

ABSTRACT

Bisphosphonates are well established pharmaceutical drugs with wide applications in medicine. Nevertheless, the side chain and the nature of phosphorous groups could induce a poor aqueous solubility and act on their bioavailability. At the same time, cyclodextrins are cage molecules that facilitate transport of hydrophobic molecules to enhance the intestinal drug absorption of these molecules by forming inclusion complexes. Here we demonstrate that cyclodextrins could be used as a bisphosphonate carrier. The formation of cyclodextrins-bisphosphonate complexes was characterized by 1D and 2D NMR spectroscopy, Isothermal Titration Calorimetry and UV-vis spectroscopy. The results revealed that only the side chain of bisphosphonate was involved in the inclusion phenomenon and its length was a crucial parameter in the control of affinity. Findings from this study suggest that cyclodextrin will be a useful carrier for bisphosphonates.


Subject(s)
Cyclodextrins/chemistry , Diphosphonates/chemistry , Drug Carriers/chemistry , Diphosphonates/administration & dosage , Solubility
20.
Beilstein J Org Chem ; 12: 1366-71, 2016.
Article in English | MEDLINE | ID: mdl-27559386

ABSTRACT

The use of nanotechnologies for biomedical applications took a real development during these last years. To allow an effective targeting for biomedical imaging applications, the adsorption of plasmatic proteins on the surface of nanoparticles must be prevented to reduce the hepatic capture and increase the plasmatic time life. In biologic media, metal oxide nanoparticles are not stable and must be coated by biocompatible organic ligands. The use of phosphonate ligands to modify the nanoparticle surface drew a lot of attention in the last years for the design of highly functional hybrid materials. Here, we report a methodology to synthesize bisphosphonates having functionalized PEG side chains with different lengths. The key step is a procedure developed in our laboratory to introduce the bisphosphonate from acyl chloride and tris(trimethylsilyl)phosphite in one step.

SELECTION OF CITATIONS
SEARCH DETAIL
...