Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Diagn ; 26(5): 349-363, 2024 May.
Article in English | MEDLINE | ID: mdl-38395408

ABSTRACT

Fast and accurate diagnosis of bloodstream infection is necessary to inform treatment decisions for septic patients, who face hourly increases in mortality risk. Blood culture remains the gold standard test but typically requires approximately 15 hours to detect the presence of a pathogen. We, therefore, assessed the potential for universal digital high-resolution melt (U-dHRM) analysis to accomplish faster broad-based bacterial detection, load quantification, and species-level identification directly from whole blood. Analytical validation studies demonstrated strong agreement between U-dHRM load measurement and quantitative blood culture, indicating that U-dHRM detection is highly specific to intact organisms. In a pilot clinical study of 17 whole blood samples from pediatric patients undergoing simultaneous blood culture testing, U-dHRM achieved 100% concordance when compared with blood culture and 88% concordance when compared with clinical adjudication. Moreover, U-dHRM identified the causative pathogen to the species level in all cases where the organism was represented in the melt curve database. These results were achieved with a 1-mL sample input and sample-to-answer time of 6 hours. Overall, this pilot study suggests that U-dHRM may be a promising method to address the challenges of quickly and accurately diagnosing a bloodstream infection.


Subject(s)
Bacteremia , Communicable Diseases , Sepsis , Humans , Child , Pilot Projects , Bacteremia/diagnosis , Bacteremia/microbiology , Bacteria/genetics , Sepsis/diagnosis
2.
medRxiv ; 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37732245

ABSTRACT

Fast and accurate diagnosis of bloodstream infection is necessary to inform treatment decisions for septic patients, who face hourly increases in mortality risk. Blood culture remains the gold standard test but typically requires ∼15 hours to detect the presence of a pathogen. Here, we assess the potential for universal digital high-resolution melt (U-dHRM) analysis to accomplish faster broad-based bacterial detection, load quantification, and species-level identification directly from whole blood. Analytical validation studies demonstrated strong agreement between U-dHRM load measurement and quantitative blood culture, indicating that U-dHRM detection is highly specific to intact organisms. In a pilot clinical study of 21 whole blood samples from pediatric patients undergoing simultaneous blood culture testing, U-dHRM achieved 100% concordance when compared with blood culture and 90.5% concordance when compared with clinical adjudication. Moreover, U-dHRM identified the causative pathogen to the species level in all cases where the organism was represented in the melt curve database. These results were achieved with a 1 mL sample input and sample-to-answer time of 6 hrs. Overall, this pilot study suggests that U-dHRM may be a promising method to address the challenges of quickly and accurately diagnosing a bloodstream infection. Universal digital high resolution melt analysis for the diagnosis of bacteremia: April Aralar, Tyler Goshia, Nanda Ramchandar, Shelley M. Lawrence, Aparajita Karmakar, Ankit Sharma, Mridu Sinha, David Pride, Peiting Kuo, Khrissa Lecrone, Megan Chiu, Karen Mestan, Eniko Sajti, Michelle Vanderpool, Sarah Lazar, Melanie Crabtree, Yordanos Tesfai, Stephanie I. Fraley.

3.
Diagn Microbiol Infect Dis ; 104(4): 115783, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36031475

ABSTRACT

The high morbidity and mortality of sepsis can be impacted by expediting identification (ID) and antibiotic susceptibility testing (AST) of causative bacteria. We evaluated the Qvella FAST™ System which creates a Liquid Colony™ (LC) from blood cultures that can be used to expedite results by 24 to 48 hours. We analyzed 289 LC samples and found that there were 17 (5.9%) that resulted in no ID. One hundred percent of the LC samples that produced an ID were concordant with SOC identification. Gram-positive bacteria showed a categorical agreement (CA) of 99.5%, with 3 minor errors (minE), and no major errors (majE) or very major errors (VME), and essential agreement (EA) of 98.9%. For Gram-negatives, the CA was 97.8% and the EA was 98.5% with 31 minE, 0 majE, and 2 VME. The FAST-System™ can accelerate ID and AST by 24 to 48 hours with potential positive impacts on time to effective therapy for sepsis.


Subject(s)
Anti-Infective Agents , Bacteremia , Gram-Negative Bacterial Infections , Sepsis , Humans , Gram-Negative Bacteria , Microbial Sensitivity Tests , Gram-Negative Bacterial Infections/microbiology , Blood-Borne Pathogens , Blood Culture/methods , Sepsis/diagnosis , Sepsis/drug therapy , Sepsis/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/diagnosis , Bacteremia/drug therapy , Bacteremia/microbiology
4.
Microbiol Spectr ; 10(5): e0144222, 2022 10 26.
Article in English | MEDLINE | ID: mdl-35972280

ABSTRACT

Urine cultures are among the highest-volume tests in clinical microbiology laboratories and usually require considerable manual labor to perform. We evaluated the APAS Independence automated plate reader system and compared it to our manual standard of care (SOC) for processing urine cultures. The APAS device provides automated image interpretation of urine culture plate growth and sorts those images that require further evaluation. We examined 1,519 specimens over a 4-month period and compared the APAS growth interpretations to our SOC. We found that 72 of the 1,519 total specimens (4.74%) had growth discrepancies, where these specimens were interpreted differently by the APAS and the technologist, which required additional evaluation of plate images on the APAS system. Overall, there were 56 discrepancies in pathogen identification, which were present in 3.69% of the cultures. An additional pathogen was uncovered in a majority of these discrepancies; 12 (21.4%) identified an additional pathogen for the SOC, and 40 (71.4%) identified an additional pathogen for the APAS workflow. We found 214 (2.69%) antimicrobial susceptibility test (AST) discrepancies; 136 (1.71%) minor errors (mEs), 41 (0.52%) major errors (MEs), and 36 (0.45%) very major errors (VMEs). Many of the MEs and VMEs occurred in only a small subset of 13 organisms, suggesting that the specimen may have had different strains of the same pathogens with differing AST results. Given the significant labor required to perform urine cultures, the APAS Independence system has the potential to reduce manual labor while maintaining the identity and AST results of urinary pathogens. IMPORTANCE Urine cultures are among the highest-volume tests performed in clinical microbiology facilities and require considerable manual labor to perform. We compared the results of our manual SOC workflow with that of the APAS Independence system, which provides automated image interpretation and sorting of urine culture plates based on growth. We examined 1,519 urine cultures processed using both workflows and found that only 4.74% had growth pattern discrepancies and 3.69% pathogen identification discrepancies. There was substantial agreement in AST results between workflows, with only 2.69% having discrepancies. Only 1.71% of the ASTs had mEs, 0.52% had MEs, and 0.45% had VMEs, with most of the MEs and VMEs belonging to a small subset of organisms. The APAS system significantly decreased manual urine culture processing, while providing similar results to the SOC. As such, incorporating such automation into laboratory workflows has the potential to significantly improve efficiency.


Subject(s)
Anti-Infective Agents , Standard of Care , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...