Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Yearb Med Inform ; (1): 188-192, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27830252

ABSTRACT

OBJECTIVES: To summarize excellent current research and propose a selection of best papers published in 2015 in the field of Bioinformatics and Translational Informatics with application in the health domain and clinical care. METHOD: We provide a synopsis of the articles selected for the IMIA Yearbook 2016, from which we attempt to derive a synthetic overview of current and future activities in the field. As last year, a first step of selection was performed by querying MEDLINE with a list of MeSH descriptors completed by a list of terms adapted to the section. Each section editor has evaluated separately the set of 1,566 articles and the evaluation results were merged for retaining 14 articles for peer-review. RESULTS: The selection and evaluation process of this Yearbook's section on Bioinformatics and Translational Informatics yielded four excellent articles focusing this year on data management of large-scale datasets and genomic medicine that are mainly new method-based papers. Three articles explore the high potential of the re-analysis of previously collected data, here from The Cancer Genome Atlas project (TCGA) and one article presents an original analysis of genomic data from sub-Saharan Africa populations. CONCLUSIONS: The current research activities in Bioinformatics and Translational Informatics with application in the health domain continues to explore new algorithms and statistical models to manage and interpret large-scale genomic datasets. From population wide genome sequencing for cataloging genomic variants to the comprehension of functional impact on pathways and molecular interactions regarding a given pathology, making sense of large genomic data requires a necessary effort to address the issue of clinical translation for precise diagnostic and personalized medicine.


Subject(s)
Computational Biology , Neoplasms/genetics , Translational Research, Biomedical , Genomics , Humans , Medical Informatics
2.
Yearb Med Inform ; 10(1): 170-3, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26293864

ABSTRACT

OBJECTIVES: To summarize excellent current research in the field of Bioinformatics and Translational Informatics with application in the health domain and clinical care. METHOD: We provide a synopsis of the articles selected for the IMIA Yearbook 2015, from which we attempt to derive a synthetic overview of current and future activities in the field. As last year, a first step of selection was performed by querying MEDLINE with a list of MeSH descriptors completed by a list of terms adapted to the section. Each section editor has evaluated separately the set of 1,594 articles and the evaluation results were merged for retaining 15 articles for peer-review. RESULTS: The selection and evaluation process of this Yearbook's section on Bioinformatics and Translational Informatics yielded four excellent articles regarding data management and genome medicine that are mainly tool-based papers. In the first article, the authors present PPISURV a tool for uncovering the role of specific genes in cancer survival outcome. The second article describes the classifier PredictSNP which combines six performing tools for predicting disease-related mutations. In the third article, by presenting a high-coverage map of the human proteome using high resolution mass spectrometry, the authors highlight the need for using mass spectrometry to complement genome annotation. The fourth article is also related to patient survival and decision support. The authors present datamining methods of large-scale datasets of past transplants. The objective is to identify chances of survival. CONCLUSIONS: The current research activities still attest the continuous convergence of Bioinformatics and Medical Informatics, with a focus this year on dedicated tools and methods to advance clinical care. Indeed, there is a need for powerful tools for managing and interpreting complex, large-scale genomic and biological datasets, but also a need for user-friendly tools developed for the clinicians in their daily practice. All the recent research and development efforts contribute to the challenge of impacting clinically the obtained results towards a personalized medicine.


Subject(s)
Computational Biology , Genomics , Precision Medicine , Humans , Pharmacogenetics , Proteome
3.
Yearb Med Inform ; 9: 212-4, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25123745

ABSTRACT

OBJECTIVE: To summarize excellent current research in the field of Bioinformatics and Translational Informatics with application in the health domain. METHOD: We provide a synopsis of the articles selected for the IMIA Yearbook 2014, from which we attempt to derive a synthetic overview of current and future activities in the field. A first step of selection was performed by querying MEDLINE with a list of MeSH descriptors completed by a list of terms adapted to the section. Each section editor evaluated independently the set of 1,851 articles and 15 articles were retained for peer-review. RESULTS: The selection and evaluation process of this Yearbook's section on Bioinformatics and Translational Informatics yielded three excellent articles regarding data management and genome medicine. In the first article, the authors present VEST (Variant Effect Scoring Tool) which is a supervised machine learning tool for prioritizing variants found in exome sequencing projects that are more likely involved in human Mendelian diseases. In the second article, the authors show how to infer surnames of male individuals by crossing anonymous publicly available genomic data from the Y chromosome and public genealogy data banks. The third article presents a statistical framework called iCluster+ that can perform pattern discovery in integrated cancer genomic data. This framework was able to determine different tumor subtypes in colon cancer. CONCLUSIONS: The current research activities still attest the continuous convergence of Bioinformatics and Medical Informatics, with a focus this year on large-scale biological, genomic, and Electronic Health Records data. Indeed, there is a need for powerful tools for managing and interpreting complex data, but also a need for user-friendly tools developed for the clinicians in their daily practice. All the recent research and development efforts are contributing to the challenge of impacting clinically the results and even going towards a personalized medicine in the near future.


Subject(s)
Computational Biology , Medical Informatics , Electronic Health Records , Genomics , Humans , Male , Translational Research, Biomedical
4.
Yearb Med Inform ; 8: 175-7, 2013.
Article in English | MEDLINE | ID: mdl-23974568

ABSTRACT

OBJECTIVES: To summarize excellent current research in the field of Bioinformatics and Translational Informatics with application in the health domain and evidence-based medicine. METHOD: We provide a synopsis of the articles selected for the IMIA Yearbook 2013, from which we attempt to derive a synthetic overview of current and future activities in the field. Three steps of selection were performed by querying PubMed and Web of Science. A first set of 5,549 articles was refined into a second set of 1,272 articles from which 15 articles were retained for peer-review. RESULTS: The selection and evaluation process of this Yearbook's section on Bioinformatics and Translational Informatics yielded four excellent articles regarding the Human Genome and Medicine. Exploiting genomic data depends on having the appropriate reference annotation available. In the first article, the goal of the GENCODE Consortium is to produce and publish The GENCODE human reference gene set. As a result it is composed by merged manual and automatic annotations, which are frequently updated from public experimental databases. The quality of genome sequencing is platform-dependant. In the second article, a generic database independent from the sequencing technologies, Huvariome, can help to identify errors and inconsistencies in sequencing. To understand complex diseases of patients it will be of great importance to detect rare gene variants. This is the aim of the third study. Finally, in the last article, the plasma's DNA of healthy individual and patients suffering from cancer is compared. CONCLUSIONS: The current research activities attest to the continuous convergence of Bioinformatics and Medical Informatics for clinical practice. For instance, a direct use of high throughput sequencing technologies for patients could aid the diagnosis of complex diseases (such as cancer) without invasive surgery (such as biopsy) but only with blood analysis. However, ongoing genomic tests will generate massive amounts of data and will imply new trends in the near future: "Big Data" and smart health management.


Subject(s)
Computational Biology , Medical Informatics , Genome, Human , Genomics , Humans , Publishing
5.
Bioinformatics ; 19(3): 319-26, 2003 Feb 12.
Article in English | MEDLINE | ID: mdl-12584116

ABSTRACT

MOTIVATION: As more and more whole genomes are available, there is a need for new methods to compare large sequences and transfer biological knowledge from annotated genomes to related new ones. BLAST is not suitable to compare multimegabase DNA sequences. MegaBLAST is designed to compare closely related large sequences. Some tools to detect repeats in large sequences have already been developed such as MUMmer or REPuter. They also have time or space restrictions. Moreover, in terms of applications, REPuter only computes repeats and MUMmer works better with related genomes. RESULTS: We present a heuristic method, named FORRepeats, which is based on a novel data structure called factor oracle. In the first step it detects exact repeats in large sequences. Then, in the second step, it computes approximate repeats and performs pairwise comparison. We compared its computational characteristics with BLAST and REPuter. Results demonstrate that it is fast and space economical. We show FORRepeats ability to perform intra-genomic comparison and to detect repeated DNA sequences in the complete genome of the model plant Arabidopsis thaliana.


Subject(s)
Algorithms , Chromosomes , Genome , Repetitive Sequences, Nucleic Acid/genetics , Sequence Alignment/methods , Arabidopsis/genetics , Chromosomes, Plant/genetics , Database Management Systems , Genome, Plant , Humans , Information Storage and Retrieval/methods , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...