Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(42): 24273-24281, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34671783

ABSTRACT

Rare earth elements are helping drive the global transition towards a greener economy. However, the way in which they are produced is far from being considered green. One of the major obstacles to developing greener production methods and the design of novel processes and materials involving rare earth elements is the limited thermodynamic data available. In the present work, we apply a suite of methods to estimate the enthalpy of formation of several rare earth compounds, including a new method based on a linear relationship, established by the authors. Experimental values of the enthalpy of formation of LnCl3, LnOCl, LnPO4, Ln2O2S, Ln2O2CO3 and NaLnO2 were collated and used to assess the accuracy of the different methods, which were then used to predict values for compounds for which no data exists. It is shown that Mostafa et al.'s group contribution method and the linear relationship proposed by the authors give the lowest mean absolute error (<9%). The volume based thermodynamics (VBT) method yields estimates with absolute mean errors below 16.0% for LnPO4 and Ln2O2S, but above 26.0% for other compounds. Correction of the VBT method using an improved estimate of the Madelung energy for the calculation of the lattice enthalpy decreases the absolute mean error below 12.0% for all compounds except LnPO4. These complementary methods provide options for calculating the enthalpy of formation of rare earth compounds, depending on the experimental data available and desired accuracy.

2.
Chemistry ; 25(37): 8725-8740, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31017723

ABSTRACT

A better understanding of the solution chemistry of the lanthanide (Ln) salts in water would have wide ranging implications in materials processing, waste management, element tracing, medicine and many more fields. This is particularly true for minerals processing, given governmental concerns about lanthanide security of supply and the drive to identify environmentally sustainable processing routes. Despite much effort, even in simple systems, the mechanisms and thermodynamics of LnIII association with small anions remain unclear. In the present study, molecular dynamics (MD), using a newly developed force field, provide new insights into LnCl3 (aq) solutions. The force field accurately reproduces the structure and dynamics of Nd3+ , Gd3+ and Er3+ in water when compared to calculations using density functional theory (DFT). Adaptive-bias MD simulations show that the mechanisms for ion pairing change from dissociative to associative exchange depending upon cation size. Thermodynamics of association reveal that whereas ion pairing is favourable, the equilibrium distribution of species at low concentration is dominated by weakly bound solvent-shared and solvent-separated ion pairs, rather than contact ion pairs, reconciling a number of contrasting observations of LnIII -Cl association in the literature. In addition, we show that the thermodynamic stabilities of a range of inner sphere and outer sphere LnCl x ( 3 - x ) + coordination complexes are comparable and that the kinetics of anion binding to cations may control solution speciation distributions beyond ion pairs. The techniques adopted in this work provide a framework with which to investigate more complex solution chemistries of cations in water.

3.
J Chem Phys ; 137(15): 154705, 2012 Oct 21.
Article in English | MEDLINE | ID: mdl-23083182

ABSTRACT

The uranyl cation UO(2)(2+) adsorption on the basal face of gibbsite is studied via Car-Parrinello molecular dynamics. In a first step, we study the water sorption on a gibbsite surface. Three different sorption modes are observed and their hydrogen bond patterns are, respectively, characterized. Then we investigate the sorption properties of an uranyl cation, in the presence of water. In order to take into account the protonation state of the (001) gibbsite face, both a neutral (001) face and a locally deprotonated (001) face are modeled. In the first case, three adsorbed uranyl complexes (1 outer sphere and 2 inner spheres) with similar stabilities are identified. In the second case, when the gibbsite face is locally deprotonated, two adsorbed complexes (1 inner sphere and 1 outer one) are characterized. The inner sphere complex appears to be the most strongly linked to the gibbsite face.

4.
J Chem Phys ; 134(1): 014511, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21219011

ABSTRACT

Dipole polarizabilities of a series of ions in aqueous solutions are computed from first-principles. The procedure is based on the study of the linear response of the maximally localized Wannier functions to an applied external field, within density functional theory. For most monoatomic cations (Li(+), Na(+), K(+), Rb(+), Mg(2+), Ca(2+) and Sr(2+)) the computed polarizabilities are the same as in the gas phase. For Cs(+) and a series of anions (F(-), Cl(-), Br(-) and I(-)), environmental effects are observed, which reduce the polarizabilities in aqueous solutions with respect to their gas phase values. The polarizabilities of H((aq)) (+), OH((aq)) (-) have also been determined along an ab initio molecular dynamics simulation. We observe that the polarizability of a molecule instantaneously switches upon proton transfer events. Finally, we also computed the polarizability tensor in the case of a strongly anisotropic molecular ion, UO(2) (2+). The results of these calculations will be useful in building interaction potentials that include polarization effects.


Subject(s)
Molecular Dynamics Simulation , Quantum Theory , Ions/chemistry , Solutions , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...