Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 106(12): 9691-9703, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641297

ABSTRACT

This study aimed to test possible metabolic differences between ewes and goats in response to an intravenous glucose infusion. Thirty-six animals, 18 mature Sarda dairy ewes and 18 mature Saanen goats (from 15 to 150 ± 11 d in milk [DIM], mean ± SD; body weight: 49.8 ± 6.8 kg for ewes, 60.6 ± 7.3 kg for goats) were compared simultaneously. In early lactation, both species received the same high-starch diet (HS: 20.4% starch, 35.4% neutral detergent fiber [NDF], on dry matter [DM] basis), whereas from 92 ± 11 DIM both species were randomly allocated to 2 dietary treatments: HS (20.0% starch, 36.7% NDF, on DM basis) and low-starch (LS: 7.8% starch, 48.8% NDF, on DM basis) diets. At 50 and 150 ± 11 DIM, ewes and goats were challenged with an intravenous glucose tolerance test and peripheral concentrations of glucose and insulin were determined 15 min before and 5, 10, 15, 30, 45, 90, and 180 min after glucose infusion. In early lactation, baseline plasma glucose and insulin concentrations tended to be higher in ewes than in goats (glucose: 55.8 vs. 42.9 ± 7.3 mg/dL; insulin: 0.13 vs. 0.05 ± 0.04 µg/L). After glucose infusion, glucose and insulin concentrations were higher in ewes than in goats (278.6 vs. 247.6 ± 13.1 mg/dL; 0.82 vs. 0.46 ± 0.12 µg/L). In mid-lactation, the dietary treatment (HS vs. LS) did not affect glucose and insulin metabolism. Baseline plasma glucose was numerically highest in ewes, while baseline insulin was higher in ewes than in goats (0.39 vs. 0.12 ± 0.099 µg/L). After glucose infusion, glucose concentration did not differ between ewes and goats, while insulin concentration was highest in ewes. Compared with goats, ewes showed in both periods a higher peak insulin, insulin increment, linear insulin area under the curve, insulin resistance index, and lower insulin sensitivity indices. In conclusion, despite the limitations associated with the use of intravenous glucose tolerance test to assess glucose regulation mechanisms, this study indicated large species differences in both early and mid-lactation and a more evident anabolic status in the ewes compared with the goats.


Subject(s)
Insulins , Starch , Animals , Female , Sheep , Starch/metabolism , Glucose/metabolism , Blood Glucose/metabolism , Goats/metabolism , Lactation/physiology , Diet/veterinary , Milk/metabolism , Animal Feed/analysis , Dietary Fiber/metabolism
2.
Animals (Basel) ; 13(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36830549

ABSTRACT

Individual dry matter intake (DMI) is a relevant factor for evaluating feed efficiency in livestock. However, the measurement of this trait on a large scale is difficult and expensive. DMI, as well as other phenotypes, can be predicted from milk spectra. The aim of this work was to predict DMI from the milk spectra of 24 lactating Sarda dairy sheep ewes. Three models (Principal Component Regression, Partial Least Squares Regression, and Stepwise Regression) were iteratively applied to three validation schemes: records, ewes, and days. DMI was moderately correlated with the wavenumbers of the milk spectra: the largest correlations (around ±0.30) were observed at ~1100-1330 cm-1 and ~2800-3000 cm-1. The average correlations between real and predicted DMI were 0.33 (validation on records), 0.32 (validation on ewes), and 0.23 (validation on days). The results of this preliminary study, even if based on a small number of animals, demonstrate that DMI can be routinely estimated from the milk spectra.

3.
Mol Reprod Dev ; 85(5): 406-416, 2018 05.
Article in English | MEDLINE | ID: mdl-29542837

ABSTRACT

Maternal nutrition during critical gestation periods impacts on offspring in later life; effects of high-starch maternal diet on testicular development in lambs were addressed. Dairy ewes were fed diets providing either 27% (Starch, S) or 11% (Fiber, F) of starch from mating to lambing (∼147 days; S147, F147) or for the last 75 days of gestation (S75, F75). Testes of single male lambs were measured and then sampled for histological and gene expression analyses at selected ages. Testicular dimensions and weight were similar among groups, but the total area of seminiferous tubules increased with age and tended to be higher (p = 0.057) in lambs from starch- than fiber-fed ewes. Sertoli and germ cells number increased with age, but was not influenced by maternal diet. Transcript abundances of androgen receptor (AR), insulin-like growth factor 1 (IGF1), and hydroxysteroid (17-beta) dehydrogenase 3 (HSD17B3) was similar between S147 and F147 lambs (p > 0.1). Abundance of luteinizing hormone/choriogonadotropin receptor (LHCGR) and steroidogenic acute regulatory protein (STAR) was higher in young vs older lambs, whereas insulin-like growth factor 2 (IGF2) levels increased with age. The expression of vascular endothelial growth factor A (VEGFA), Anti-Müllerian hormone (AMH), IGF1, follicle stimulating hormone receptor (FSHR), and insulin-like growth factor 2 receptor (IGF2R) was not influenced by maternal diet or lamb age (p > 0.1). In conclusion, a high-starch maternal diet did not influence gene expression, but may have affected testicular structure in infant offspring, as seen by an increase in the total area of seminiferous tubules.


Subject(s)
Animal Feed , Gene Expression Regulation/drug effects , Prenatal Exposure Delayed Effects/metabolism , Seminiferous Tubules/growth & development , Sertoli Cells/metabolism , Sheep/growth & development , Starch/pharmacology , Animals , Female , Male , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...