Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Res ; 29(1): 100, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317201

ABSTRACT

BACKGROUND: Fighter aircraft pilots are regularly exposed to physiological challenges from high acceleration (Gz) forces, as well as increased breathing pressure and oxygen supply in the support systems. We studied whether effects on the lung and systemic oxidative stress were detectable after real training flights comprising of a wide variety of exposure conditions, and their combinations. METHODS: Thirty-five pilots of the German Air Force performed 145 flights with the Eurofighter Typhoon. Prior to and after flight lung diffusing capacity for carbon monoxide (DLCO) and nitric oxide (DLNO), alveolar volume (VA), and diffusing capacities per volume (KCO, KNO) were assessed. In addition, the fractional concentration of exhaled nitric oxide (FeNO) was determined, and urine samples for the analysis of molecular species related to 8-hydroxy-2'-deoxyguanosine (8-OHdG) were taken. For statistical analysis, mixed ANOVA models were used. RESULTS: DLNO, DLCO, KNO, KCO and VA were reduced (p < 0.001) after flights, mean ± SD changes being 2.9 ± 5.0, 3.2 ± 5.2, 1.5 ± 3.7, 1.9 ± 3.7 and 1.4 ± 3.1%, respectively, while FeNO decreased by 11.1% and the ratio of 8-OHdG to creatinine increased by 15.7 ± 37.8%. The reductions of DLNO (DLCO) were smaller (p < 0.001) than those of KNO (KCO). In repeated flights on different days, baseline values were restored. Amongst various flight parameters comprising Gz-forces and/or being indicative of positive pressure breathing and oxygenation support, the combination of long flight duration and high altitude appeared to be linked to greater changes in DLNO and DLCO. CONCLUSIONS: The pattern of reductions in diffusing capacities suggests effects arising from atelectasis and increased diffusion barrier, without changes in capillary blood volume. The decrease in exhaled endogenous NO suggests bronchial mucosal irritation and/or local oxidative stress, and the increase in urinary oxidized guanosine species suggests systemic oxidative stress. Although changes were small and not clinically relevant, their presence demonstrated physiological effects of real training flights in a modern 4th generation fighter jet.


Subject(s)
Lung , Nitric Oxide , Humans , Pulmonary Diffusing Capacity/physiology
2.
Mil Med Res ; 8(1): 15, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33618779

ABSTRACT

BACKGROUND: Technological advancements in modern military and acrobatic jet planes have resulted in extraordinary psychophysiological loads being exerted upon flying personnel, including inducing neck and back pain. The purpose of this study was to examine the effects of 12 weeks of functional strength training on 1) the volume and strength of the neck and shoulder muscles and 2) muscular activity upon exposure to helmets of different masses and elevated Gz forces in a long-arm centrifuge in high-performance aircraft personnel. METHODS: Eighteen participants underwent 12 weeks of functional strength training (n = 12) or the control protocol (n = 6) without additional strength training. Pre- and post-intervention tests included evaluations of isometric strength of the head extensor muscles, flexion, and lateral flexion and rotation, as well as magnetic resonance imaging (MRI) to measure the volume of the m. sternocleidomastoideus, m. trapezius, and deep neck muscles. Furthermore, during a long-arm centrifuge (+ 1.4 and + 3 Gz) protocol, the muscular activity levels of the m. sternocleidomastoideus, m. trapezius and m. erector spinae muscles were assessed without a flight helmet, with a helmet, and with a helmet and night vision goggles. Each participant's perception of muscular strain was noted immediately after the long-arm centrifuge protocol. RESULTS: The maximal isometric strength in all exercises and muscle volumes increased in the training group but not the control group (P < 0.05). Relative muscle activity (%MVC) with a helmet decreased after the intervention in the training but not the control group (P = 0.01). Relative muscle activity while wearing a helmet and night vision goggles was higher after intervention in the control group than in the training group (P < 0.01). The perceived muscular strain of the neck muscles induced by the long-arm centrifuge did not differ between the groups. CONCLUSION: Twelve weeks of functional strength training improves the maximal isometric strength and volume of neck and shoulder muscles and leads to lower relative muscle activation upon exposure to elevated Gz forces in a long-arm centrifuge.


Subject(s)
Centrifugation/adverse effects , Gravitation , Muscle Strength/physiology , Resistance Training/methods , Resistance Training/standards , Aerospace Medicine/methods , Aircraft/instrumentation , Centrifugation/methods , Humans , Resistance Training/statistics & numerical data
3.
Aerosp Med Hum Perform ; 88(9): 834-840, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28818142

ABSTRACT

BACKGROUND: The objective assessment of psychophysiological arousal during challenging flight maneuvers is of great interest to aerospace medicine, but remains a challenging task. In the study presented here, a vector-methodological approach was used which integrates different psychophysiological variables, yielding an integral arousal index called the Psychophysiological Arousal Value (PAV). METHODS: The arousal levels of 15 male pilots were assessed during predetermined, well-defined flight maneuvers performed under simulated and real flight conditions. RESULTS: The physiological data, as expected, revealed inter- and intra-individual differences for the various measurement conditions. As indicated by the PAV, air-to-air refueling (AAR) turned out to be the most challenging task. In general, arousal levels were comparable between simulator and real flight conditions. However, a distinct difference was observed when the pilots were divided by instructors into two groups based on their proficiency in AAR with AWACS (AAR-Novices vs. AAR-Professionals). AAR-Novices had on average more than 2000 flight hours on other aircrafts. They showed higher arousal reactions to AAR in real flight (contact: PAV score 8.4 ± 0.37) than under simulator conditions (7.1 ± 0.30), whereas AAR-Professionals did not (8.5 ± 0.46 vs. 8.8 ± 0.80). DISCUSSION: The psychophysiological arousal value assessment was tested in field measurements, yielding quantifiable arousal differences between proficiency groups of pilots during simulated and real flight conditions. The method used in this study allows an evaluation of the psychophysiological cost during a certain flying performance and thus is possibly a valuable tool for objectively evaluating the actual skill status of pilots.Johannes B, Rothe S, Gens A, Westphal S, Birkenfeld K, Mulder E, Rittweger J, Ledderhos C. Psychophysiological assessment in pilots performing challenging simulated and real flight maneuvers. Aerosp Med Hum Perform. 2017; 88(9):834-840.


Subject(s)
Pilots , Psychomotor Performance/physiology , Task Performance and Analysis , Adult , Aerospace Medicine , Arousal/physiology , Computer Simulation , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...