Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Phys Chem Au ; 4(2): 148-159, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38560752

ABSTRACT

Hydrogen evolution reaction (HER) rates are higher where magnetic gradients are established at electrode surfaces. In comparison of literature data for metals with comparable work functions, we note 1000× higher rates for paramagnetic metals than diamagnetic metals. With unpaired electron spins, paramagnetic and ferromagnetic metals establish interfacial magnetic gradients. At diamagnetic electrodes, gradients are induced by addition of magnetized microparticles. Onset of hydrogen evolution for magnetized γ-Fe2O3 microparticles in Nafion on diamagnetic glassy carbon electrodes is lower by 190 mV (-18 kJ mol-1) relative to demagnetized microparticles. Chemically the same as demagnetized particles, the physical distinction of magnetic field and gradient at magnetized microparticles increases electron transfer rate. For magnetized Fe3O4 microparticles, the onset is lower by 280 mV (-27 kJ mol-1). Paramagnetic platinum electrodes are unaffected by addition of magnetized microparticles. Magnetoelectrocatalysis is established by magnetic gradients.

2.
J Phys Chem C Nanomater Interfaces ; 127(25): 12184-12193, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37415972

ABSTRACT

Sonochemistry in a thin fluid layer has advantages of no visible cavitation, no turbulence, negligible temperature changes (≲1 °C), low power transducers, and transmissibility (sound pressure amplification) of ≳106. Unlike sonochemistry in semi-infinite fluids, resonance and so constructive interference of sound pressure can be established in thin layers. Constructive interference enables substantial amplification of sound pressure at solid fluid interfaces. Fluid properties of sound velocity and attenuation, oscillator input frequency, and thin fluid layer thickness couple to established resonance in underdamped conditions. In thin layer sonochemistry (TLS), thin layers are established where ultrasonic wavelength and oscillator-interface separation are comparable, about a centimeter in water. Solution of a one dimensional wave equation identifies explicit relationships between the system parameters required to establish resonance and constructive interference in a thin layer.

3.
Langmuir ; 38(46): 14025-14035, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36343277

ABSTRACT

The confinement-dependent properties of solvents, particularly water, within nanoporous spaces impart unique physical and chemical behavior compared to those of the bulk. This has previously been demonstrated for a U(VI)-based metal organic nanotube that displays ice-like arrays of water molecules within the 1-D pore space and complete selectivity to H2O over all other solvents and isotopologues. Based upon our previous work on D2O and HTO adsorption processes, we suggested that the water uptake was controlled by a two-step process: (1) surface adsorption via hydrogen bonding to hydrophilic amine and carboxylic groups and (2) diffusion of the water into the hydrophobic 1-D nanochannels. The current study seeks to evaluate this hypothesis and expand our existing kinetic model for the water diffusion step to account for the initial surface adsorption process. Vapor sorption experiments, paired with thermogravimetric and Fourier-transform infrared analyses, yielded uptake data that were fit using a Langmuir model for the surface-adsorption step of the mechanism. The water adsorption curve was designated a type IV Brunauer-Emmett-Teller isotherm, which indicated that our original hypothesis was correct. Additional work with binary solvent systems enabled us to evaluate the uptake in a range of conditions and determine that the uptake is not controlled by the vapor pressure but is instead completely dependent on the relative humidity of the system.

4.
Environ Sci Technol ; 56(23): 17454-17461, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36394877

ABSTRACT

Predicting the redox behavior of magnetite in reducing soils and sediments is challenging because there is neither agreement among measured potentials nor consensus on which Fe(III) | Fe(II) equilibria are most relevant. Here, we measured open-circuit potentials of stoichiometric magnetite equilibrated over a range of solution conditions. Notably, electron transfer mediators were not necessary to reach equilibrium. For conditions where ferrous hydroxide precipitation was limited, Nernstian behavior was observed with an EH vs pH slope of -179 ± 4 mV and an EH vs Fe(II)aq slope of -54 ± 4 mV. Our estimated EHo of 857 ± 8 mV closely matches a maghemite|aqueous Fe(II) EHo of 855 mV, suggesting that it plays a dominant role in poising the solution potential and that it's theoretical Nernst equation of EH[mV] = 855 - 177 pH - 59 log [Fe2+] may be useful in predicting magnetite redox behavior under these conditions. At higher pH values and without added Fe(II), a distinct shift in potentials was observed, indicating that the dominant Fe(III)|Fe(II) couple(s) poising the potential changed. Our findings, coupled with previous Mössbauer spectroscopy and kinetic data, provide compelling evidence that the maghemite/Fe(II)aq couple accurately predicts the redox behavior of stoichiometric magnetite suspensions in the presence of aqueous Fe(II) between pH values of 6.5 and 8.5.


Subject(s)
Ferric Compounds , Ferrosoferric Oxide , Ferrosoferric Oxide/chemistry , Ferric Compounds/chemistry , Suspensions , Oxidation-Reduction , Water
5.
Molecules ; 27(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36014292

ABSTRACT

The facile solvent-free synthesis of several known metal thiophosphates was accomplished by a chemical exchange reaction between anhydrous metal chlorides and elemental phosphorus with sulfur, or combinations of phosphorus with molecular P2S5 at moderate 500 °C temperatures. The crystalline products obtained from this synthetic approach include MPS3 (M = Fe, Co, Ni) and Cu3PS4. The successful reactions benefit from thermochemically favorable PCl3 elimination. This solvent-free route performed at moderate temperatures leads to mixed anion products with complex heteroatomic anions, such as P2S64−. The MPS3 phases are thermally metastable relative to the thermodynamically preferred separate MPx/ MSy and more metal-rich MPxSy phases. The micrometer-sized M-P-S products exhibit room-temperature optical and magnetic properties consistent with isolated metal ion structural arrangements and semiconducting band gaps. The MPS3 materials were examined as electrocatalysts in hydrogen evolution reactions (HER) under acidic conditions. In terms of HER activity at lower applied potentials, the MPS3 materials show the trend of Co > Ni >> Fe. Extended time constant potential HER experiments show reasonable HER stability of ionic and semiconducting MPS3 (M = Co, Ni) structures under acidic reducing conditions.

6.
Inorg Chem ; 60(11): 7593-7601, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33984231

ABSTRACT

Low-valent uranium coordination chemistry continues to rely heavily on access to trivalent starting materials, but these reagents are typically prepared from uranium turnings, which are becoming increasingly difficult to acquire. Here we report convenient syntheses of UI3(THF)4 (THF = tetrahydrofuran) and UBr3(THF)4 from UCl4, a more accessible uranium starting material that can be prepared from commercially available uranium oxides. UCl3(THF)2 (1), UBr3(THF)4 (2), and UI3(THF)4 (3) were prepared by single-pot reductions from UCl4 using KH and KC8 and converted to 2 or 3 by halide exchange with the corresponding Me3SiX (where X = Br or I). Reduction of UI4(Et2O)2 (4; Et2O = diethyl ether) and UI4(1,4-dioxane)2 (5) was also shown to cleanly yield 3. Complex 1 was also synthesized separately by the addition of anhydrous HCl to U(BH4)3(THF)2, which was prepared by thermal reduction of U(BH4)4. All three trivalent uranium halide complexes were isolated in high crystalline yields (typically 85-99%) and their formulations were confirmed by single-crystal X-ray diffraction, elemental analysis, and 1H NMR and IR spectroscopy. Elemental analysis conducted on triplicate samples of 1-3 exposed to vacuum for different time intervals revealed significant THF loss for all three complexes in as little as 15 min. Overall, these results offer expedient entry into low-valent uranium chemistry for researchers lacking access to uranium turnings.

7.
Dalton Trans ; 49(20): 6854-6866, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32383725

ABSTRACT

The neptunyl (Np(v)O2+/Np(vi)O22+) cation is the dominant form of 237Np in acidic aqueous solutions and the stability of the Np(v) and Np(vi) species is driven by the specific chemical constituents present in the system. Hydrogen bonding with the oxo group may impact the stability of these species, but there is limited understanding of how these intermolecular interactions influence the behavior of both solution and solid-state species. In the current study, we systematically evaluate the interactions between the neptunyl tetrachloride species and hydrogen donors in coordination complexes and in the related aqueous solutions. Both Np(v) compounds (N2C4H12)2[Np(v)O2Cl4]Cl (Np(V)pipz) and (NOC4H10)3[Np(v)O2Cl4] (Np(V)morph) exhibit directional hydrogen bonding to the neptunyl oxo group while Np(vi) compounds (NC5H6)2[Np(vi)O2Cl4] (Np(VI)pyr) and (NOC4H10)4[Np(vi)O2Cl4]·2Cl (Np(VI)morph) assemble via halogen interactions. The Raman spectra of the solid-state phases indicate the activation of vibrational bands when there is asymmetry of the neptunyl bond, while these spectral features are not observed within the related solution phase spectra. Density functional theory calculations of the Np(V)pipz system suggest that activation of the ν3 asymmetric stretch and other combination modes lead to additional complexity within the solid-state spectra. Electrochemical analyses of complexes in the solution phases are consistent with the results of the crystallization experiments as the voltammetric potentials of Np(v)/Np(vi) complexes in the presence of protonated heterocycles differ from the potentials of pure Np(v) and may correlate with the hydrogen bonding interactions.

8.
Inorg Chem ; 58(8): 5013-5024, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30901203

ABSTRACT

Metal phosphides from the 3d period exhibit a range of structures and compositions. Many metal-rich phosphides and monophosphides function as heterogeneous electrocatalysts in the hydrogen evolution reaction. This paper describes the direct and tin flux-assisted synthesis of phosphorus-rich metal phosphides with MP2 or MP3 compositions. The facile synthesis of FeP2, CoP3, NiP2, and CuP2 is thermochemically driven by PCl3 formation from reactions of anhydrous metal halides and P4 vapor at 500 °C. Well-crystallized micrometer-sized particles result from these solvent-free reactions. A tin flux leads to more complete reactions at lower temperature for FeP2 and enables synthesis of a monoclinic polymorph of NiP2 rather than the kinetic cubic product formed by direct reaction. These crystalline metal phosphides are investigated as electrocatalyts for hydrogen evolution in acidic and buffered aqueous solutions. All phosphorus-rich products show very good stability in strongly acidic media. The catalytic activity for hydrogen evolution ordered by higher current at a fixed electrode geometric area and low onset potential is CoP3 > NiP2 (cubic and monoclinic) > FeP2 ≫ CuP2. At high applied potentials, CuP2 undergoes surface reactions and roughening that improve its electrocatalytic activity. Correlations of the observed electrocatalytic activity with electrochemically active surface area, particle size, metallic versus semiconducting properties, and local metal coordination environment are noted for these phosphorus-rich 3d metal phosphides.

9.
Chem Commun (Camb) ; 48(98): 11972-4, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23128912

ABSTRACT

The addition of a magnetic composite membrane to a traditional nickel electrocatalyst was employed to increase the methanol and n-butanol electrocatalysis in alkaline media.


Subject(s)
1-Butanol/chemistry , Electrochemical Techniques , Methanol/chemistry , Nickel/chemistry , Catalysis , Magnetic Fields
10.
Anal Chem ; 74(18): 4794-9, 2002 Sep 15.
Article in English | MEDLINE | ID: mdl-12349985

ABSTRACT

The densities of commercial Nafion 117 and cast Nafion 1100 films were determined by the hydrostatic weighing method for films fully exchanged with hexaammineruthenium(III), tris(2,2' bipyridyl)ruthenium(II), tetramethylammonium, ferrous, and hydrogen ions. Films were pretreated in either water or concentrated nitric acid prior to cation exchange. All densities ranged between 1.65 and 2.19 g/cm3. Excluding the proton-exchanged films, the average density is 1.90 +/- 0.14 g/cm3, well in excess of the 1.58 g/cm3 commonly employed for Nafion. The density of acid-pretreated Nafion 1100 was constant at 1.95 +/- 0.03 g/cm3 for all cations except the proton. A simple, empirical model based on the Coulombic interaction between the intercalated cation and the sulfonate sites of the Nafion characterizes density for the commercial Nafion 117 films. A modified version of the model is appropriate for water-treated Nafion 1100. Water content of the films and implications for characterizing modified electrodes are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...