Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Genet Med ; : 101170, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38818797

ABSTRACT

PURPOSE: KBG syndrome (KBGS) is a rare neurodevelopmental syndrome caused by haploinsufficiency of ANKRD11. The childhood phenotype is extensively reported but limited for adults. Thus, we aimed to delineate the clinical features of KBGS. METHODS: We collected physician-reported data of adults with molecularly confirmed KBGS through an international collaboration. Moreover, we undertook a systematic literature review to determine the scope of previously reported data. RESULTS: The international collaboration identified 36 adults from 31 unrelated families with KBGS. Symptopms included mild/borderline intellectual disability (n=22); gross and/or fine motor difficulties (n=15); psychiatric and behavioral comorbidities including aggression, anxiety, reduced attention span, and autistic features (n=26); nonverbal (n=3), seizures with various seizure types and treatment responses (n=10); ophthalmological comorbidities (n=20). Cognitive regression during adulthood was reported once. Infrequent features included dilatation of the ascending aorta (n=2) and autoimmune conditions (n=4). Education, work, and residence varied and the diversity of professional and personal roles highlighted the range of abilities seen. The literature review identified 154 adults reported across the literature, and we have summarized the features across both datasets. CONCLUSION: Our study sheds light on the long-term neurodevelopmental outcomes, seizures, behavioral and psychiatric features, and education, work, and living arrangements for adults with KBGS.

2.
Ann Neurol ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37606373

ABSTRACT

OBJECTIVE: Variants in GABRA1 have been associated with a broad epilepsy spectrum, ranging from genetic generalized epilepsies to developmental and epileptic encephalopathies. However, our understanding of what determines the phenotype severity and best treatment options remains inadequate. We therefore aimed to analyze the electroclinical features and the functional effects of GABRA1 variants to establish genotype-phenotype correlations. METHODS: Genetic and electroclinical data of 27 individuals (22 unrelated and 2 families) harboring 20 different GABRA1 variants were collected and accompanied by functional analysis of 19 variants. RESULTS: Individuals in this cohort could be assigned into different clinical subgroups based on the functional effect of their variant and its structural position within the GABRA1 subunit. A homogenous phenotype with mild cognitive impairment and infantile onset epilepsy (focal seizures, fever sensitivity, and electroencephalographic posterior epileptiform discharges) was described for variants in the extracellular domain and the small transmembrane loops. These variants displayed loss-of-function (LoF) effects, and the patients generally had a favorable outcome. A more severe phenotype was associated with variants in the pore-forming transmembrane helices. These variants displayed either gain-of-function (GoF) or LoF effects. GoF variants were associated with severe early onset neurodevelopmental disorders, including early infantile developmental and epileptic encephalopathy. INTERPRETATION: Our data expand the genetic and phenotypic spectrum of GABRA1 epilepsies and permit delineation of specific subphenotypes for LoF and GoF variants, through the heterogeneity of phenotypes and variants. Generally, variants in the transmembrane helices cause more severe phenotypes, in particular GoF variants. These findings establish the basis for a better understanding of the pathomechanism and a precision medicine approach in GABRA1-related disorders. Further studies in larger populations are needed to provide a conclusive genotype-phenotype correlation. ANN NEUROL 2023.

3.
Epileptic Disord ; 25(3): 383-389, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37536979

ABSTRACT

INTRODUCTION: Pathogenic variants of the GABRG2 gene, encoding a GABAA receptor subunit, have been associated with various epileptic syndromes and drug-resistant epilepsy. Vinpocetine has been previously reported efficacious in a patient harboring a GABRB3 pathogenic variant, encoding another GABAA receptor subunit. CASE PRESENTATION: We describe a patient with GABRG2-related drug-resistant epilepsy who improved after vinpocetine treatment. An 8-year-old boy with a family history of epilepsy was diagnosed with early onset absence epilepsy at 6 months of age and was treated unsuccessfully with sodium valproate and ethosuximide. At 6 years of age, he developed generalized tonic-clonic seizures and increasing absences despite lamotrigine add-on as well as learning difficulties. Brain MRI was normal and video-EEG telemetry showed multiple myoclonic absences. An epilepsy gene panel analysis showed a GABRG2 pathogenic variant, c.254 T > A p.(Ile85Lys) (NM_198903.2), inherited from the proband's father. Seizures were resistant to several medications. After treatment with vinpocetine add-on, the patient showed a dramatic initial response, further reduction of seizures, and improvement of his cognitive functions. CONCLUSION: This case illustrates that vinpocetine could be considered in drug-resistant epilepsies related to GABRG2 in accordance with the principles of precision medicine.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Absence , Epilepsy, Generalized , Male , Humans , Child , Epilepsy, Absence/drug therapy , Epilepsy, Absence/genetics , Epilepsy, Absence/diagnosis , Precision Medicine , Receptors, GABA-A/genetics , Anticonvulsants/therapeutic use , Seizures/drug therapy , Drug Resistant Epilepsy/drug therapy , Drug Resistant Epilepsy/genetics , Epilepsy, Generalized/diagnosis
4.
Brain ; 146(12): 5198-5208, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37647852

ABSTRACT

Genetic variants in the SLC6A1 gene can cause a broad phenotypic disease spectrum by altering the protein function. Thus, systematically curated clinically relevant genotype-phenotype associations are needed to understand the disease mechanism and improve therapeutic decision-making. We aggregated genetic and clinical data from 172 individuals with likely pathogenic/pathogenic (lp/p) SLC6A1 variants and functional data for 184 variants (14.1% lp/p). Clinical and functional data were available for a subset of 126 individuals. We explored the potential associations of variant positions on the GAT1 3D structure with variant pathogenicity, altered molecular function and phenotype severity using bioinformatic approaches. The GAT1 transmembrane domains 1, 6 and extracellular loop 4 (EL4) were enriched for patient over population variants. Across functionally tested missense variants (n = 156), the spatial proximity from the ligand was associated with loss-of-function in the GAT1 transporter activity. For variants with complete loss of in vitro GABA uptake, we found a 4.6-fold enrichment in patients having severe disease versus non-severe disease (P = 2.9 × 10-3, 95% confidence interval: 1.5-15.3). In summary, we delineated associations between the 3D structure and variant pathogenicity, variant function and phenotype in SLC6A1-related disorders. This knowledge supports biology-informed variant interpretation and research on GAT1 function. All our data can be interactively explored in the SLC6A1 portal (https://slc6a1-portal.broadinstitute.org/).


Subject(s)
GABA Plasma Membrane Transport Proteins , Genetic Association Studies , Mutation, Missense , Humans , GABA Plasma Membrane Transport Proteins/genetics , GABA Plasma Membrane Transport Proteins/metabolism , Phenotype
5.
Eur J Hum Genet ; 31(9): 1040-1047, 2023 09.
Article in English | MEDLINE | ID: mdl-37407733

ABSTRACT

HNRNPU encodes a multifunctional RNA-binding protein that plays critical roles in regulating pre-mRNA splicing, mRNA stability, and translation. Aberrant expression and dysregulation of HNRNPU have been implicated in various human diseases, including cancers and neurological disorders. We applied a next generation sequencing based assay (EPIC-NGS) to investigate genome-wide methylation profiling for >2 M CpGs for 7 individuals with a neurodevelopmental disorder associated with HNRNPU germline pathogenic loss-of-function variants. Compared to healthy individuals, 227 HNRNPU-associated differentially methylated positions were detected. Both hyper- and hypomethylation alterations were identified but the former predominated. The identification of a methylation episignature for HNRNPU-associated neurodevelopmental disorder (NDD) implicates HNPRNPU-related chromatin alterations in the aetiopathogenesis of this disorder and suggests that episignature profiling should have clinical utility as a predictor for the pathogenicity of HNRNPU variants of uncertain significance. The detection of a methylation episignaure for HNRNPU-associated NDD is consistent with a recent report of a methylation episignature for HNRNPK-associated NDD.


Subject(s)
Epigenome , Neurodevelopmental Disorders , Humans , DNA Methylation , Germ Cells , Germ-Line Mutation , Neurodevelopmental Disorders/genetics
6.
Eur J Hum Genet ; 31(9): 1023-1031, 2023 09.
Article in English | MEDLINE | ID: mdl-37344571

ABSTRACT

BRAT1 biallelic variants are associated with rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL), and neurodevelopmental disorder associating cerebellar atrophy with or without seizures syndrome (NEDCAS). To date, forty individuals have been reported in the literature. We collected clinical and molecular data from 57 additional cases allowing us to study a large cohort of 97 individuals and draw phenotype-genotype correlations. Fifty-nine individuals presented with BRAT1-related RMFSL phenotype. Most of them had no psychomotor acquisition (100%), epilepsy (100%), microcephaly (91%), limb rigidity (93%), and died prematurely (93%). Thirty-eight individuals presented a non-lethal phenotype of BRAT1-related NEDCAS phenotype. Seventy-six percent of the patients in this group were able to walk and 68% were able to say at least a few words. Most of them had cerebellar ataxia (82%), axial hypotonia (79%) and cerebellar atrophy (100%). Genotype-phenotype correlations in our cohort revealed that biallelic nonsense, frameshift or inframe deletion/insertion variants result in the severe BRAT1-related RMFSL phenotype (46/46; 100%). In contrast, genotypes with at least one missense were more likely associated with NEDCAS (28/34; 82%). The phenotype of patients carrying splice variants was variable: 41% presented with RMFSL (7/17) and 59% with NEDCAS (10/17).


Subject(s)
Epilepsy , Neurodegenerative Diseases , Humans , Nuclear Proteins/genetics , Epilepsy/genetics , Phenotype , Genotype , Genetic Association Studies , Neurodegenerative Diseases/genetics , Atrophy
7.
Neurology ; 100(12): e1234-e1247, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36599696

ABSTRACT

BACKGROUND AND OBJECTIVES: BRAT1 encephalopathy is an ultra-rare autosomal recessive neonatal encephalopathy. We delineate the neonatal electroclinical phenotype at presentation and provide insights for early diagnosis. METHODS: Through a multinational collaborative, we studied a cohort of neonates with encephalopathy associated with biallelic pathogenic variants in BRAT1 for whom detailed clinical, neurophysiologic, and neuroimaging information was available from the onset of symptoms. Neuropathologic changes were also analyzed. RESULTS: We included 19 neonates. Most neonates were born at term (16/19) from nonconsanguineous parents. 15/19 (79%) were admitted soon after birth to a neonatal intensive care unit, exhibiting multifocal myoclonus, both spontaneous and exacerbated by stimulation. 7/19 (37%) had arthrogryposis at birth, and all except 1 progressively developed hypertonia in the first week of life. Multifocal myoclonus, which was present in all but 1 infant, was the most prominent manifestation and did not show any EEG correlate in 16/19 (84%). Video-EEG at onset was unremarkable in 14/19 (74%) infants, and 6 (33%) had initially been misdiagnosed with hyperekplexia. Multifocal seizures were observed at a median age of 14 days (range: 1-29). During the first months of life, all infants developed progressive encephalopathy, acquired microcephaly, prolonged bouts of apnea, and bradycardia, leading to cardiac arrest and death at a median age of 3.5 months (range: 20 days to 30 months). Only 7 infants (37%) received a definite diagnosis before death, at a median age of 34 days (range: 25-126), and almost two-thirds (12/19, 63%) were diagnosed 8 days to 12 years postmortem (median: 6.5 years). Neuropathology examination, performed in 3 patients, revealed severely delayed myelination and diffuse astrogliosis, sparing the upper cortical layers. DISCUSSION: BRAT1 encephalopathy is a neonatal-onset, rapidly progressive neurologic disorder. Neonates are often misdiagnosed as having hyperekplexia, and many die undiagnosed. The key phenotypic features are multifocal myoclonus, an organized EEG, progressive, persistent, and diffuse hypertonia, and an evolution into refractory multifocal seizures, prolonged bouts of apnea, bradycardia, and early death. Early recognition of BRAT1 encephalopathy allows for prompt workup, appropriate management, and genetic counseling.


Subject(s)
Brain Diseases , Hyperekplexia , Myoclonus , Humans , Apnea , Bradycardia , Brain Diseases/diagnosis , Brain Diseases/genetics , Seizures/genetics , Phenotype , Muscle Hypertonia , Nuclear Proteins/genetics
8.
Hum Mol Genet ; 31(24): 4131-4142, 2022 12 16.
Article in English | MEDLINE | ID: mdl-35861666

ABSTRACT

KBG syndrome (KBGS) is characterized by distinctive facial gestalt, short stature and variable clinical findings. With ageing, some features become more recognizable, allowing a differential diagnosis. We aimed to better characterize natural history of KBGS. In the context of a European collaborative study, we collected the largest cohort of KBGS patients (49). A combined array- based Comparative Genomic Hybridization and next generation sequencing (NGS) approach investigated both genomic Copy Number Variants and SNVs. Intellectual disability (ID) (82%) ranged from mild to moderate with severe ID identified in two patients. Epilepsy was present in 26.5%. Short stature was consistent over time, while occipitofrontal circumference (median value: -0.88 SD at birth) normalized over years. Cerebral anomalies, were identified in 56% of patients and thus represented the second most relevant clinical feature reinforcing clinical suspicion in the paediatric age when short stature and vertebral/dental anomalies are vague. Macrodontia, oligodontia and dental agenesis (53%) were almost as frequent as skeletal anomalies, such as brachydactyly, short fifth finger, fifth finger clinodactyly, pectus excavatum/carinatum, delayed bone age. In 28.5% of individuals, prenatal ultrasound anomalies were reported. Except for three splicing variants, leading to a premature termination, variants were almost all frameshift. Our results, broadening the spectrum of KBGS phenotype progression, provide useful tools to facilitate differential diagnosis and improve clinical management. We suggest to consider a wider range of dental anomalies before excluding diagnosis and to perform a careful odontoiatric/ear-nose-throat (ENT) evaluation in order to look for even submucosal palate cleft given the high percentage of palate abnormalities. NGS approaches, following evidence of antenatal ultrasound anomalies, should include ANKRD11.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Dwarfism , Intellectual Disability , Tooth Abnormalities , Pregnancy , Female , Humans , Facies , Tooth Abnormalities/genetics , Bone Diseases, Developmental/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Comparative Genomic Hybridization , Repressor Proteins/genetics , Phenotype , Dwarfism/genetics , European People
9.
Clin Genet ; 102(2): 98-109, 2022 08.
Article in English | MEDLINE | ID: mdl-35616059

ABSTRACT

Biallelic variants of the gene encoding for the zinc-finger protein 142 (ZNF142) have recently been associated with intellectual disability (ID), speech impairment, seizures, and movement disorders in nine individuals from five families. In this study, we obtained phenotype and genotype information of 26 further individuals from 16 families. Among the 27 different ZNF142 variants identified in the total of 35 individuals only four were missense. Missense variants may give a milder phenotype by changing the local structure of ZF motifs as suggested by protein modeling; but this correlation should be validated in larger cohorts and pathogenicity of the missense variants should be investigated with functional studies. Clinical features of the 35 individuals suggest that biallelic ZNF142 variants lead to a syndromic neurodevelopmental disorder with mild to moderate ID, varying degrees of delay in language and gross motor development, early onset seizures, hypotonia, behavioral features, movement disorders, and facial dysmorphism. The differences in symptom frequencies observed in the unpublished individuals compared to those of published, and recognition of previously underemphasized facial features are likely to be due to the small sizes of the previous cohorts, which underlines the importance of larger cohorts for the phenotype descriptions of rare genetic disorders.


Subject(s)
Intellectual Disability , Movement Disorders , Neurodevelopmental Disorders , Transcription Factors , Humans , Intellectual Disability/diagnosis , Movement Disorders/complications , Neurodevelopmental Disorders/genetics , Phenotype , Seizures/complications , Seizures/genetics , Transcription Factors/genetics
10.
Am J Med Genet A ; 188(7): 2036-2047, 2022 07.
Article in English | MEDLINE | ID: mdl-35445792

ABSTRACT

Unique or multiple congenital facial skin polyps are features of several rare syndromes, from the most well-known Pai syndrome (PS), to the less recognized oculoauriculofrontonasal syndrome (OAFNS), encephalocraniocutaneous lipomatosis (ECCL), or Sakoda complex (SC). We set up a research project aiming to identify the molecular bases of PS. We reviewed 27 individuals presenting with a syndromic frontonasal polyp and initially referred for PS. Based on strict clinical classification criteria, we could confirm only nine (33%) typical and two (7%) atypical PS individuals. The remaining ones were either OAFNS (11/27-41%) or presenting with an overlapping syndrome (5/27-19%). Because of the phenotypic overlap between these entities, OAFNS, ECCL, and SC can be either considered as differential diagnosis of PS or part of the same spectrum. Exome and/or genome sequencing from blood DNA in 12 patients and from affected tissue in one patient failed to identify any replication in candidate genes. Taken together, our data suggest that conventional approaches routinely utilized for the identification of molecular etiologies responsible for Mendelian disorders are inconclusive. Future studies on affected tissues and multiomics studies will thus be required in order to address either the contribution of mosaic or noncoding variation in these diseases.


Subject(s)
Eye Abnormalities , Lipomatosis , Neurocutaneous Syndromes , Agenesis of Corpus Callosum , Cleft Lip , Coloboma , Craniofacial Abnormalities , Diagnosis, Differential , Ear, External/abnormalities , Eye Abnormalities/genetics , Eye Diseases , Face/abnormalities , Humans , Lipoma , Lipomatosis/genetics , Nasal Polyps , Neurocutaneous Syndromes/genetics , Respiratory System Abnormalities , Skin Diseases , Spine/abnormalities
11.
Eur J Med Genet ; 65(4): 104469, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35276412

ABSTRACT

Pathogenic variants in the genes encoding for the ASC1 complex were recently reported in patients with congenital fractures, joint contractures, neonatal hypotonia and respiratory distress. Here we report two male children with biallelic TRIP4 pathogenic loss of function variants. The first child presented with foetal bradykinesia, neonatal respiratory distress, central and peripheral hypotonia, constipation, hyperlaxity, left uretero-hydronephrosis and post-obstructive kidney dysplasia. The second had severe central and peripheral neonatal hypotonia, feeding difficulties, kyphosis, developmental delay and hyperlaxity. Detailed review of all reported cases with ASCC1 (12 patients) and TRIP4 (18 patients) variants highlights striking genotype-phenotype correlations. This is the fourth report of patients with TRIP4 variants and the first description of post-obstructive kidney dysplasia in this condition.


Subject(s)
Muscular Diseases , Carrier Proteins/genetics , Child , Genetic Association Studies , Humans , Male , Muscle Hypotonia/genetics , Muscular Diseases/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Epilepsy Behav ; 126: 108471, 2022 01.
Article in English | MEDLINE | ID: mdl-34915430

ABSTRACT

AIM: KCNB1 encephalopathy encompasses a broad phenotypic spectrum associating intellectual disability, behavioral disturbances, and epilepsies of various severity. Using standardized parental questionnaires, we aimed to capture the heterogeneity of the adaptive and behavioral features in a series of patients with KCNB1 pathogenic variants. METHODS: We included 25 patients with a KCNB1 encephalopathy, aged from 3.2 to 34.1 years (median = 10 years). Adaptive functioning was assessed in all patients using the French version of the Vineland Adaptive Behavior Scales, Second Edition (VABS-II) questionnaire. We screened global behavior with the Childhood Behavioral Check-List (CBCL, Achenbach) and autism spectrum disorder (ASD) with the Social Communication Questionnaire (SCQ). We used a cluster analysis to identify subgroups of adaptive profiles. RESULTS: VABS-II questionnaire showed pathological adaptive behavior in all participants with a severity of adaptive deficiency ranging from mild in 8/20 to severe in 7/20. Eight out of 16 were at risk of Attention Problems at the CBCL and 13/18 were at risk of autism spectrum disorder (ASD). The adaptive behavior composite score significantly decreased with age (Spearman's Rho=-0.72, p<0.001) but not the equivalent ages, suggesting stagnation and slowing but no regression over time. The clustering analysis identified two subgroups of patients, one showing more severe adaptive behavior. The severity of the epilepsy phenotype predicted the severity of the behavioral profile with a sensitivity of 70% and a specificity of 90.9%. CONCLUSION: This study confirms the deleterious consequences of early-onset epilepsy in addition to the impact of the gene dysfunction in patients with KCNB1 encephalopathy. ASD and attention disorders are frequent. Parental questionnaires should be considered as useful tools for early screening and care adaptation.


Subject(s)
Autism Spectrum Disorder , Brain Diseases , Epilepsy , Intellectual Disability , Adaptation, Psychological , Adolescent , Adult , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/genetics , Brain Diseases/complications , Brain Diseases/epidemiology , Brain Diseases/genetics , Child , Child, Preschool , Epilepsy/genetics , Humans , Intellectual Disability/epidemiology , Intellectual Disability/genetics , Intellectual Disability/psychology , Shab Potassium Channels/genetics , Young Adult
13.
Genet Med ; 24(3): 681-693, 2022 03.
Article in English | MEDLINE | ID: mdl-34906499

ABSTRACT

PURPOSE: Pathogenic variants in GABRB3 have been associated with a spectrum of phenotypes from severe developmental disorders and epileptic encephalopathies to milder epilepsy syndromes and mild intellectual disability (ID). In this study, we analyzed a large cohort of individuals with GABRB3 variants to deepen the phenotypic understanding and investigate genotype-phenotype correlations. METHODS: Through an international collaboration, we analyzed electro-clinical data of unpublished individuals with variants in GABRB3, and we reviewed previously published cases. All missense variants were mapped onto the 3-dimensional structure of the GABRB3 subunit, and clinical phenotypes associated with the different key structural domains were investigated. RESULTS: We characterized 71 individuals with GABRB3 variants, including 22 novel subjects, expressing a wide spectrum of phenotypes. Interestingly, phenotypes correlated with structural locations of the variants. Generalized epilepsy, with a median age at onset of 12 months, and mild-to-moderate ID were associated with variants in the extracellular domain. Focal epilepsy with earlier onset (median: age 4 months) and severe ID were associated with variants in both the pore-lining helical transmembrane domain and the extracellular domain. CONCLUSION: These genotype-phenotype correlations will aid the genetic counseling and treatment of individuals affected by GABRB3-related disorders. Future studies may reveal whether functional differences underlie the phenotypic differences.


Subject(s)
Epilepsy , Intellectual Disability , Epilepsy/genetics , Genetic Association Studies , Humans , Intellectual Disability/genetics , Mutation , Phenotype , Receptors, GABA-A/genetics
14.
Mol Genet Genomic Med ; 9(9): e1768, 2021 09.
Article in English | MEDLINE | ID: mdl-34402213

ABSTRACT

BACKGROUND: Primary microcephaly (PM) is defined as a significant reduction in occipitofrontal circumference (OFC) of prenatal onset. Clinical and genetic heterogeneity of PM represents a diagnostic challenge. METHODS: We performed detailed phenotypic and genomic analyses in a large cohort (n = 169) of patients referred for PM and could establish a molecular diagnosis in 38 patients. RESULTS: Pathogenic variants in ASPM and WDR62 were the most frequent causes in non-consanguineous patients in our cohort. In consanguineous patients, microarray and targeted gene panel analyses reached a diagnostic yield of 67%, which contrasts with a much lower rate in non-consanguineous patients (9%). Our series includes 11 novel pathogenic variants and we identify novel candidate genes including IGF2BP3 and DNAH2. We confirm the progression of microcephaly over time in affected children. Epilepsy was an important associated feature in our PM cohort, affecting 34% of patients with a molecular confirmation of the PM diagnosis, with various degrees of severity and seizure types. CONCLUSION: Our findings will help to prioritize genomic investigations, accelerate molecular diagnoses, and improve the management of PM patients.


Subject(s)
Consanguinity , Epilepsy/genetics , Genotype , Microcephaly/genetics , Phenotype , Cell Cycle Proteins/genetics , Child , Epilepsy/epidemiology , Epilepsy/pathology , Female , Gene Frequency , Genetic Heterogeneity , Humans , Incidence , Male , Microcephaly/complications , Microcephaly/pathology , Nerve Tissue Proteins/genetics
15.
Epilepsia ; 62(8): 1907-1920, 2021 08.
Article in English | MEDLINE | ID: mdl-34153113

ABSTRACT

OBJECTIVE: Although most seizures in neonates are due to acute brain injury, some represent the first sign of neonatal onset genetic epilepsies. Delay in recognition and lack of expert assessment of neonates with epilepsy may result in worse developmental outcomes. As in older children and adults, seizure semiology in neonates is an essential determinant in diagnosis. We aimed to establish whether seizure type at presentation in neonates can suggest a genetic etiology. METHODS: We retrospectively analyzed the clinical and electroencephalographic (EEG) characteristics of seizures in neonates admitted in two Level IV neonatal intensive care units, diagnosed with genetic epilepsy, for whom a video-EEG recording at presentation was available for review, and compared them on a 1:2 ratio with neonates with seizures due to stroke or hypoxic-ischemic encephalopathy. RESULTS: Twenty neonates with genetic epilepsy were identified and compared to 40 neonates with acute provoked seizures. Genetic epilepsies were associated with pathogenic variants in KCNQ2 (n = 12), KCNQ3 (n = 2), SCN2A (n = 2), KCNT1 (n = 1), PRRT2 (n = 1), and BRAT1 (n = 2). All neonates with genetic epilepsy had seizures with clinical correlates that were either tonic (18/20) or myoclonic (2/20). In contrast, 17 of 40 (42%) neonates with acute provoked seizures had electrographic only seizures, and the majority of the remainder had clonic seizures. Time to first seizure was longer in neonates with genetic epilepsies (median = 60 h of life) compared to neonates with acute provoked seizures (median = 15 h of life, p < .001). Sodium channel-blocking antiseizure medications were effective in 13 of 14 (92%) neonates with tonic seizures who were trialed at onset or during the course of the epilepsy. SIGNIFICANCE: Seizure semiology is an easily accessible sign of genetic epilepsies in neonates. Early identification of the seizure type can prompt appropriate workup and treatment. Tonic seizures are associated with channelopathies and are often controlled by sodium channel-blocking antiseizure medications.


Subject(s)
Epilepsy , Hypoxia-Ischemia, Brain , Adult , Child , Electroencephalography , Humans , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/genetics , Infant, Newborn , Nerve Tissue Proteins , Potassium Channels, Sodium-Activated , Retrospective Studies , Seizures/etiology , Seizures/genetics
16.
Am J Hum Genet ; 108(5): 929-941, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33811806

ABSTRACT

Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a ∼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment.


Subject(s)
Autism Spectrum Disorder/genetics , Haploinsufficiency/genetics , Histone Deacetylases/metabolism , Intellectual Disability/genetics , Repressor Proteins/genetics , Acetylation , Adolescent , Animals , Child , Child, Preschool , DNA Copy Number Variations/genetics , Female , Histones/chemistry , Histones/metabolism , Humans , Infant , Larva/genetics , Magnetic Resonance Imaging , Male , Middle Aged , Models, Molecular , Mutation , Repressor Proteins/deficiency , Repressor Proteins/metabolism , Syndrome , Young Adult , Zebrafish/genetics , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics
17.
Genet Med ; 23(7): 1202-1210, 2021 07.
Article in English | MEDLINE | ID: mdl-33674768

ABSTRACT

PURPOSE: The variant spectrum and the phenotype of X-linked Kabuki syndrome type 2 (KS2) are poorly understood. METHODS: Genetic and clinical details of new and published individuals with pathogenic KDM6A variants were compiled and analyzed. RESULTS: Sixty-one distinct pathogenic KDM6A variants (50 truncating, 11 missense) from 80 patients (34 males, 46 females) were identified. Missense variants clustered in the TRP 2, 3, 7 and Jmj-C domains. Truncating variants were significantly more likely to be de novo. Thirteen individuals had maternally inherited variants and one had a paternally inherited variant. Neonatal feeding difficulties, hypoglycemia, postnatal growth retardation, poor weight gain, motor delay, intellectual disability (ID), microcephaly, congenital heart anomalies, palate defects, renal malformations, strabismus, hearing loss, recurrent infections, hyperinsulinism, seizures, joint hypermobility, and gastroesophageal reflux were frequent clinical findings. Facial features of over a third of patients were not typical for KS. Males were significantly more likely to be born prematurely, have shorter stature, and severe developmental delay/ID. CONCLUSION: We expand the KDM6A variant spectrum and delineate the KS2 phenotype. We demonstrate that the variability of the KS2 phenotypic depends on sex and the variant type. We also highlight the overlaps and differences between the phenotypes of KS2 and KS1.


Subject(s)
Histone Demethylases/genetics , Intellectual Disability , Sex Characteristics , Abnormalities, Multiple , DNA-Binding Proteins/genetics , Face/abnormalities , Female , Genetic Association Studies , Hematologic Diseases , Humans , Infant, Newborn , Intellectual Disability/genetics , Male , Neoplasm Proteins/genetics , Phenotype , Vestibular Diseases
18.
Genet Med ; 23(6): 1137-1142, 2021 06.
Article in English | MEDLINE | ID: mdl-33564150

ABSTRACT

PURPOSE: Noninvasive prenatal screening (NIPS) using cell-free DNA has transformed prenatal care. Belgium was the first country to implement and fully reimburse NIPS as a first-tier screening test offered to all pregnant women. A consortium consisting of all Belgian genetic centers report the outcome of two years genome-wide NIPS implementation. METHODS: The performance for the common trisomies and for secondary findings was evaluated based on 153,575 genome-wide NIP tests. Furthermore, the evolution of the number of invasive tests and the incidence of Down syndrome live births was registered. RESULTS: Trisomies 21, 18, and 13 were detected in respectively 0.32%, 0.07%, and 0.06% of cases, with overall positive predictive values (PPVs) of 92.4%, 84.6%, and 43.9%. Rare autosomal trisomies and fetal segmental imbalances were detected in respectively 0.23% and 0.07% of cases with PPVs of 4.1% and 47%. The number of invasive obstetric procedures decreased by 52%. The number of trisomy 21 live births dropped to 0.04%. CONCLUSION: Expanding the scope of NIPS beyond trisomy 21 fetal screening allows the implementation of personalized genomic medicine for the obstetric population. This genome-wide NIPS approach has been embedded successfully in prenatal genetic care in Belgium and might serve as a framework for other countries offering NIPS.


Subject(s)
Chromosome Disorders , Down Syndrome , Noninvasive Prenatal Testing , Aneuploidy , Chromosome Disorders/diagnosis , Chromosome Disorders/epidemiology , Chromosome Disorders/genetics , Down Syndrome/diagnosis , Down Syndrome/epidemiology , Down Syndrome/genetics , Female , Humans , Pregnancy , Prenatal Diagnosis , Trisomy
19.
Clin Genet ; 99(3): 462-474, 2021 03.
Article in English | MEDLINE | ID: mdl-33368194

ABSTRACT

IQSEC2 mutations are associated with IQSEC2-related intellectual disability (ID). Phenotypic spectrum has been better defined in the last few years by the increasing number of reported cases although the genotype-phenotype relationship for IQSEC2 remains overall complex. As for IQSEC2-related ID a wide phenotypic diversity has been described in Rett syndrome (RTT). Several patients harboring IQSEC2 mutations present with clinical symptoms similar to RTT and some cases meet most of the criteria for classic RTT. With the aim of establishing a genotype-phenotype correlation, we collected data of 16 patients harboring IQSEC2 point mutations (15 of them previously unreported) and of five novel patients carrying CNVs encompassing IQSEC2. Most of our patients surprisingly shared a moderate-to-mild phenotype. The similarities in the clinical course between our mild cases and patients with milder forms of atypical RTT reinforce the hypothesis that also IQSEC2 mutated patients may lay under the wide clinical spectrum of RTT and thus IQSEC2 should be considered in the differential diagnosis. Our data confirm that position, type of variant and gender are crucial for IQSEC2-associated phenotype delineation.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Intellectual Disability/genetics , Rett Syndrome/genetics , Adolescent , Adult , Child , Child, Preschool , Diagnosis, Differential , Female , Genetic Association Studies , Humans , Male , Middle Aged , Point Mutation , Rett Syndrome/diagnosis , Exome Sequencing , Young Adult
20.
Epilepsia ; 61(11): 2461-2473, 2020 11.
Article in English | MEDLINE | ID: mdl-32954514

ABSTRACT

OBJECTIVE: We aimed to delineate the phenotypic spectrum and long-term outcome of individuals with KCNB1 encephalopathy. METHODS: We collected genetic, clinical, electroencephalographic, and imaging data of individuals with KCNB1 pathogenic variants recruited through an international collaboration, with the support of the family association "KCNB1 France." Patients were classified as having developmental and epileptic encephalopathy (DEE) or developmental encephalopathy (DE). In addition, we reviewed published cases and provided the long-term outcome in patients older than 12 years from our series and from literature. RESULTS: Our series included 36 patients (21 males, median age = 10 years, range = 1.6 months-34 years). Twenty patients (56%) had DEE with infantile onset seizures (seizure onset = 10 months, range = 10 days-3.5 years), whereas 16 (33%) had DE with late onset epilepsy in 10 (seizure onset = 5 years, range = 18 months-25 years) and without epilepsy in six. Cognitive impairment was more severe in individuals with DEE compared to those with DE. Analysis of 73 individuals with KCNB1 pathogenic variants (36 from our series and 37 published individuals in nine reports) showed developmental delay in all with severe to profound intellectual disability in 67% (n = 41/61) and autistic features in 56% (n = 32/57). Long-term outcome in 22 individuals older than 12 years (14 in our series and eight published individuals) showed poor cognitive, psychiatric, and behavioral outcome. Epilepsy course was variable. Missense variants were associated with more frequent and more severe epilepsy compared to truncating variants. SIGNIFICANCE: Our study describes the phenotypic spectrum of KCNB1 encephalopathy, which varies from severe DEE to DE with or without epilepsy. Although cognitive impairment is worse in patients with DEE, long-term outcome is poor for most and missense variants are associated with more severe epilepsy outcome. Further understanding of disease mechanisms should facilitate the development of targeted therapies, much needed to improve the neurodevelopmental prognosis.


Subject(s)
Brain Diseases/diagnostic imaging , Brain Diseases/genetics , Epilepsy/diagnostic imaging , Epilepsy/genetics , Genetic Variation/genetics , Shab Potassium Channels/genetics , Adolescent , Adult , Brain Diseases/physiopathology , Child , Child, Preschool , Cohort Studies , Electroencephalography/trends , Epilepsy/physiopathology , Female , Humans , Infant , Male , Retrospective Studies , Time Factors , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...