Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 18(1)2016 Dec 24.
Article in English | MEDLINE | ID: mdl-28029115

ABSTRACT

The purpose of this study was two-fold: (1) to formulate γ-tocotrienol (GT3) in a nanoemulsion formulation as a prophylactic orally administered radioprotective agent; and (2) to optimize the storage conditions to preserve the structural integrity of both the formulation and the compound. γ-tocotrienol was incorporated into a nanoemulsion and lyophilized with lactose. Ultra performance liquid chromatography-mass spectroscopy (UPLC-MS) was used to monitor the chemical stability of GT3 over time, the particle size and ζ potential, and scanning electron microscopy (SEM) were used to study the physical stability of the nanoemulsion. Radioprotective and toxicity studies were performed in mice. The liquid formulation exhibited GT3 degradation at all storage temperatures. Lyophilization, in the presence of lactose, significantly reduced GT3 degradation. Both the liquid and lyophilized nanoemulsions had stable particle size and ζ potential when stored at 4 °C. Toxicity studies of the nanoemulsion resulted in no observable toxicity in mice at an oral dose of 600 mg/kg GT3. The nano-formulated GT3 (300 mg/kg) demonstrated enhanced survival efficacy compared to GT3 alone (200 and 400 mg/kg) in CD2F1 mice exposed to total body gamma radiation. The optimal long-term storage of formulated GT3 is as a powder at -20 °C to preserve drug and formulation integrity. Formulation of GT3 as a nanoemulsion for oral delivery as a prophylactic radioprotectant shows promise and warrants further investigation.


Subject(s)
Chromans/chemistry , Radiation-Protective Agents/chemistry , Vitamin E/analogs & derivatives , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/prevention & control , Administration, Oral , Animals , Chromans/administration & dosage , Chromans/adverse effects , Chromans/therapeutic use , Drug Stability , Emulsions/chemistry , Lactose/chemistry , Male , Mice , Radiation-Protective Agents/administration & dosage , Radiation-Protective Agents/adverse effects , Radiation-Protective Agents/therapeutic use , Vitamin E/administration & dosage , Vitamin E/adverse effects , Vitamin E/chemistry , Vitamin E/therapeutic use
2.
Int J Pharm Compd ; 20(5): 421-425, 2016.
Article in English | MEDLINE | ID: mdl-28339377

ABSTRACT

Clindamycin is an effective antibiotic in the treatment of infections caused by certain gram-positive and gram-negative anaerobic microorganisms. While manufactured forms of the drug for pediatric use are available, there are instances when a compounded liquid dosage form is essential to meet unique patient needs. The purpose of this study was to determine the chemical stability of clindamycin hydrochloride in the PCCA base SuspendIt, a sugar-free, paraben- free, dye-free, and gluten-free thixotropic vehicle containing a natural sweetener obtained from the monk fruit. It thickens upon standing to minimize settling of any insoluble drug particles and becomes fluid upon shaking to allow convenient pouring during administration to the patient. A robust stability-indicating high-performance liquid chromatographic assay for the determination of clindamycin hydrochloride in SuspendIt was developed and validated. This assay was used to determine the chemical stability of the drug in SuspendIt. Samples were prepared and stored under three different temperature conditions (5°C, 25°C, and 40°C), and assayed using the high-performance liquid chromatographic assay at pre-determined intervals over an extended period of time as follows: 7, 14, 30, 45, 60, 91, 120, and 182 days at each designated temperature. Physical data such as pH, viscosity, and appearance were also monitored. The study showed that drug concentration did not go below 90% of the label claim (initial drug concentration) at all three temperatures studied, barring isolated experimental errors. Viscosity and pH values also did not change significantly. Some variations in viscosity were attributed to the thixotropic nature of the vehicle. This study demonstrates that clindamycin hydrochloride is physically and chemically stable in SuspendIt for 182 days in the refrigerator and at room temperature, thus providing a viable, compounded alternative for clindamycin hydrochloride in a liquid dosage form, with an extended beyond-use date to meet patient needs.


Subject(s)
Anti-Bacterial Agents/analysis , Chromones/analysis , Clindamycin/analysis , Chromatography, High Pressure Liquid , Drug Compounding , Drug Stability , Drug Storage , Excipients , Hydrogen-Ion Concentration , Suspensions , Temperature
3.
Am J Health Syst Pharm ; 72(14): 1181-7, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26150567

ABSTRACT

PURPOSE: The pharmacologic properties of a recently approved inhaled insulin product, its unique delivery system, and the results of clinical safety and efficacy trials are reviewed. SUMMARY: Afrezza (also called Technosphere Insulin, MannKind Corporation, Valencia, CA) is a novel ultrarapid-acting insulin formulation indicated for use in improving glycemic control in selected patients with type 1 or type 2 diabetes mellitus. Afrezza is not intended as a substitute for traditional basal therapy with injectable long-acting insulin but may be used to provide prandial insulin coverage; it must be used in combination with long-acting insulin in patients with type 1 diabetes. Administered before meals using a dry-powder inhalation device, Afrezza is formulated with a novel excipient (fumaryl diketopiperazine) that dissolves instantly in lung fluid and releases recombinant human insulin for absorption. In clinical trials, rates of hypoglycemia in Afrezza-treated patients were significantly lower than rates reported in comparator groups receiving injectable insulin products. The most commonly reported adverse effect of Afrezza is coughing, which tends to occur shortly after inhalation and is typically mild. Afrezza is not recommended for use in patients who smoke (or have recently stopped smoking) and those with a chronic lung disease such as asthma or chronic obstructive pulmonary disease. Afrezza is not recommended for the treatment of diabetic ketoacidosis. CONCLUSION: Afrezza is a safe and effective treatment for selected adults with type 1 or type 2 diabetes, potentially providing an alternative to injectable insulin for prandial blood glucose control.


Subject(s)
Diabetes Mellitus/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Administration, Inhalation , Blood Glucose/drug effects , Blood Glucose/metabolism , Clinical Trials as Topic/methods , Diabetes Mellitus/blood , Humans
4.
Pharm Res ; 32(12): 3827-36, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26113235

ABSTRACT

PURPOSE: To evaluate functional immunogenicity of CHrPfs25. a malaria transmission blocking vaccine antigen, using nanoemulsion and porous polymeric PLGA nanoparticles. METHODS: CHrPfs25 was formulated with nanoemulsions (NE) and poly(D,L-lactide-co-glycolide) nanoparticles (PLGA-NP) and evaluated via IM route in mice. Transmission blocking efficacy of antibodies was evaluated by standard mosquito membrane feeding assay using purified IgG from immune sera. Physicochemical properties and stability of various formulations were evaluated by measuring poly-dispersity index, particle size and zeta potential. RESULTS: Mice immunized with CHrPfs25 using alum via IP and IM routes induced comparable immune responses. The highest antibody response was obtained with CHrPfs25 formulated in 4% NE as compared to 8% NE and PLGA-NP. No further increases were observed by combining NE with MPL-A and chitosan. One hundred percent transmission blocking activity was demonstrated at 400 µg/ml of IgG for alum groups (both routes IP and IM), 4% NE and NE-MPL-A. Purified IgG from various adjuvant groups at lower doses (100 µg/mL) still exhibited >90% transmission blocking activity, while 52-81% blocking was seen at 50 µg/mL. CONCLUSION: Results suggest that CHrPfs25 delivered in various adjuvants/nanoparticles elicited strong functional immunogenicity in pre-clinical studies in mice. We are now continuing these studies to develop effective vaccine formulations for further evaluation of immune correlates of relative immunogenicity of CHrPfs25 in various adjuvants and clinical trials.


Subject(s)
Lactic Acid/chemistry , Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Nanoparticles/chemistry , Plasmodium falciparum/immunology , Polyglycolic Acid/chemistry , Protozoan Proteins/administration & dosage , Recombinant Proteins/administration & dosage , Animals , Antibody Formation , Emulsions/chemistry , Female , Immunization , Malaria Vaccines/immunology , Malaria Vaccines/therapeutic use , Malaria, Falciparum/immunology , Mice , Mice, Inbred BALB C , Nanoparticles/ultrastructure , Polylactic Acid-Polyglycolic Acid Copolymer , Protozoan Proteins/immunology , Protozoan Proteins/therapeutic use , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use
5.
J Biomater Sci Polym Ed ; 26(13): 868-80, 2015.
Article in English | MEDLINE | ID: mdl-26062393

ABSTRACT

The objective of this study is to develop nanostructured lipid formulations of Compritol for the delivery of mebendazole. The formulations were prepared with Compritol 888 ATO, squalane, and Pluronic F68. Nine batches with different amounts of modifier, squalane, and drug were prepared. The formulations were characterized by evaluating particle size, morphology, and zeta potential. The thermal properties of the formulations were analyzed by differential scanning calorimetry (DSC). The encapsulation efficiency of each formulation and the drug release rates from each formulation were quantified by UPLC. The particles were spherical and had median particle sizes between 300 and 600 nm (50th percentile). A linear relationship was observed between Compritol/squalane composition and the melting point of the mixture. The DSC scans of the formulations revealed some recrystallization of the drug from the formulations, and the amount of recrystallization correlated with the amount of squalane in the formulation. Approximately, 70% efficiency of encapsulation was observed in the formulations with 30% (w/w) squalane, and these formulations also had faster dissolution rates compared to the other formulations. Overall, the formulations with 30% squalane are the preferred formulation for future testing.


Subject(s)
Drug Carriers , Fatty Acids , Mebendazole/administration & dosage , Nanoparticles , Squalene/analogs & derivatives , Tubulin Modulators/administration & dosage , Calorimetry, Differential Scanning , Drug Carriers/chemistry , Drug Liberation , Fatty Acids/chemistry , Mebendazole/pharmacokinetics , Microscopy, Electron, Scanning , Nanoparticles/chemistry , Particle Size , Poloxamer/chemistry , Squalene/chemistry , Transition Temperature , Tubulin Modulators/pharmacokinetics
6.
Eur J Pharm Sci ; 76: 1-9, 2015 Aug 30.
Article in English | MEDLINE | ID: mdl-25933716

ABSTRACT

Fenretinide is an anticancer drug with low water solubility and poor bioavailability. The goal of this study was to develop biodegradable polymeric nanoparticles of fenretinide with the intent of increasing its apparent aqueous solubility and intestinal permeability. Three biodegradable polymers were investigated for this purpose: two different poly lactide-co-glycolide (PLGA) polymers, one acid terminated and one ester terminated, and one poly lactide-co-glycolide/polyethylene glycol (PLGA/PEG) diblock copolymer. Nanoparticles were obtained by using an emulsification solvent evaporation technique. The formulations were characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and particle size analysis. Dissolution studies and Caco-2 cell permeation studies were also carried out for all formulations. Ultra high performance liquid chromatography coupled with mass spectrometry (UPLC/MS) and ultraviolet detection was used for the quantitative determination of fenretinide. Drug loading and the type of polymer affected the nanoparticles' physical properties, drug release rate, and cell permeability. While the acid terminated PLGA nanoparticles performed the best in drug release, the ester terminated PLGA nanoparticles performed the best in the Caco-2 cell permeability assays. The PLGA/PEG copolymer nanoparticles performed better than the formulations with ester terminated PLGA in terms of drug release but had the poorest performance in terms of cell permeation. All three categories of formulations performed better than the drug alone in both drug release and cell permeation studies.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers , Fenretinide/chemistry , Nanoparticles , Polymers/chemistry , Administration, Oral , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/metabolism , Caco-2 Cells , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid , Esters/chemistry , Fenretinide/administration & dosage , Fenretinide/metabolism , Humans , Intestinal Absorption , Intestinal Mucosa/metabolism , Kinetics , Lactic Acid/chemistry , Mass Spectrometry , Microscopy, Electron, Scanning , Particle Size , Permeability , Polyethylene Glycols/chemistry , Polyglactin 910/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Solubility , Spectrophotometry, Ultraviolet , Technology, Pharmaceutical/methods
7.
Int J Pharm ; 479(2): 329-37, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25542987

ABSTRACT

Fenretinide is an effective anti-cancer drug with high in vitro cytotoxicity and low in vivo systemic toxicity. In clinical trials, fenretinide has shown poor therapeutic efficacy following oral administration - attributed to its low bioavailability and solubility. The long term goal of this project is to develop a formulation for the oral delivery of fenretinide. The purpose of this part of the study was to prepare and characterize hydrophilic nanoparticle formulations of fenretinide. Three different ratios of polyvinyl pyrrolidone (PVP) to fenretinide were used, namely, 3:1, 4:1, and 5:1. Both drug and polymer were dissolved in a mixture of methanol and dichloromethane (2:23 v/v). Rotary evaporation was used to remove the solvents, and, following reconstitution with water, a high pressure homogenizer was used to form nanoparticles. The particle size and polydispersity index were measured before and after lyophilization. The formulations were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray powder diffraction (XRPD). The effectiveness of the formulations was assessed by release studies and Caco-2 cell permeability assays. As the PVP content increased, the recovered particle size following lyophilization became more consistent with the pre-lyophilization particle size, especially for those formulations with less lactose. The DSC scans of the formulations did not show any fenretinide melting endotherms, indicating that the drug was either present in an amorphous form in the formulation or that a solid solution of the drug in PVP had formed. For the release studies, the highest drug release among the formulations was 249.2±35.5ng/mL for the formulation with 4:1 polymer-to-drug. When the permeability of the formulations was evaluated in a Caco-2 cell model, the mean normalized flux for each treatment group was significantly higher (p<0.05) from the fenretinide control. The formulation containing 4:1 polymer-to-drug ratio and 6:5 lactose-to-formulation ratio emerged as the optimal choice for further evaluation as a potential oral delivery formulation for fenretinide.


Subject(s)
Antineoplastic Agents/administration & dosage , Fenretinide/administration & dosage , Nanoparticles , Povidone/chemistry , Antineoplastic Agents/chemistry , Caco-2 Cells , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Fenretinide/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Particle Size , Permeability , Solubility , X-Ray Diffraction
8.
Drug Dev Ind Pharm ; 41(5): 819-24, 2015 May.
Article in English | MEDLINE | ID: mdl-24738789

ABSTRACT

OBJECTIVE: The goal of this study is to develop an ultra-high performance liquid chromatographic method for the quantitative determination of artemisinin at very low concentrations using selective ion mass spectroscopic detection. MATERIALS AND METHODS: Separation was conducted using a C4 100 mm× 2.1 mm column, and the mobile phase consisted of an isocratic two-component system consisting of 60% of a 0.1% aqueous solution of formic acid and 40% acetonitrile at a flow rate of 0.4 ml/min. The drug was detected by means of an electrospray mass spectrometer with selective ion monitoring of the [M-H2O+H](+) with m/z of 265.3 in positive ion mode. RESULTS: The calibration curves of artemisinin obtained from the UPLC/MS system were linear in the three ranges analyzed, with a correlation coefficient of no less than 0.9996 for all sets of standards. The peak tailing factor for all measurements were ≤1.7. The method proved to have good repeatability and linearity. DISCUSSION: The described analytical method reached a LOQ of 0.010 µg/ml with an isocratic system and enables an analysis rate of 20 samples per hour. The linearity of the standards was excellent for all sets of standards analyzed. CONCLUSION: The method presented in this study provides a rapid and suitable means for the determination of artemisinin at very low concentrations. This is especially significant when performing dissolution studies where, due to the low solubility of artemisinin, a method that can measure the drug at nanogram levels is necessary.


Subject(s)
Antimalarials/analysis , Artemisinins/analysis , Chromatography, High Pressure Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Antimalarials/chemistry , Artemisinins/chemistry , Calibration , Limit of Detection , Reproducibility of Results , Solubility
9.
Drug Dev Ind Pharm ; 40(3): 370-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23600657

ABSTRACT

OBJECTIVE: The purpose of this study is to develop a nanoemulsion formulation for its use as a transcutaneous vaccine delivery system. MATERIALS AND METHODS: With bovine albumin-fluorescein isothiocyanate conjugate (FITC-BSA) as a vaccine model, formulations were selected with the construction of pseudo-ternary phase diagrams and a short-term stability study. The size of the emulsion droplets was furthered optimized with high-pressure homogenization. The optimized formulation was evaluated for its skin permeation efficiency. In vitro skin permeation studies were conducted with shaved BALB/c mice skin samples with a Franz diffusion cell system. Different drug concentrations were compared, and the effect of the nanoemulsion excipients on the permeation of the FITC-BSA was also studied. RESULTS: The optimum homogenization regime was determined to be five passes at 20 000 psi, with no evidence of protein degradation during processing. With these conditions, the particle diameter was 85.2 nm ± 15.5 nm with a polydispersity index of 0.186 ± 0.026 and viscosity of 14.6 cP ± 1.2 cP. The optimized formulation proved stable for 1 year at 4 °C. In vitro skin diffusion studies show that the optimized formulation improves the permeation of FITC-BSA through skin with an enhancement ratio of 4.2 compared to a neat control solution. Finally, a comparison of the skin permeation of the nanoemulsion versus only the surfactant excipients resulted in a steady state flux of 23.44 µg/cm(2)/h for the nanoemulsion as opposed to 6.10 µg/cm(2)/h for the emulsifiers. CONCLUSION: A novel nanoemulsion with optimized physical characteristics and superior skin permeation compared to control solution was manufactured. The formulation proposed in this study has the flexibility for the incorporation of a variety of active ingredients and warrants further development as a transcutaneous vaccine delivery vehicle.


Subject(s)
Drug Delivery Systems , Nanoparticles , Skin Absorption , Vaccines/administration & dosage , Administration, Cutaneous , Animals , Chemistry, Pharmaceutical/methods , Drug Stability , Drug Storage , Emulsions , Excipients/chemistry , Fluorescein-5-isothiocyanate/administration & dosage , Fluorescein-5-isothiocyanate/chemistry , Fluorescein-5-isothiocyanate/pharmacokinetics , In Vitro Techniques , Mice , Mice, Inbred BALB C , Particle Size , Permeability , Serum Albumin, Bovine/administration & dosage , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/pharmacokinetics , Surface-Active Agents/chemistry , Vaccines/chemistry , Vaccines/pharmacokinetics , Viscosity
10.
Int J Pharm ; 423(2): 525-34, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22172291

ABSTRACT

The goal of this study is to evaluate the stability of lyophilized siRNA formulations. The gene silencing efficiency of a stored lyophilized siRNA formulation (i.e. siRNA nanosomes) was evaluated in interferon-α (IFN-α) resistant hepatitis C virus (HCV) at different time points up to three months in an in vitro cell culture model and compared with freshly prepared siRNA formulations. Novel siRNA sequences were encapsulated within nanosize liposomes following condensation with protamine sulfate. The siRNA encapsulated nanosomes were lyophilized and stored at 4 °C for 3 months, along with liquid liposomes (L) and lyophilized liposome powder (P) which were subsequently used to prepare siRNA nanosomes (L) and siRNA nanosomes (P), respectively at different time points. Physiochemical and biological properties of all three formulations were compared at different time points up to 3 months. The particle size of the stored siRNA nanosomes (642 ± 25 nm) was considerably larger initially in comparison with the liquid liposomes (134 ± 5 nm) and lyophilized liposomes (118 ± 3). However, the particle size gradually became smaller over time (413 ± 128 nm by the third month). The zeta potential of all three formulations was initially very high (> +40 mV), followed by a gradual decrease over time. The amount of siRNA in the stored siRNA nanosomes decreased ∼18 % during the 3 month storage period (1.16 ± 0.03 nmol initially on day 1 vs. 0.95 ± 0.04 nmol after 3 months). With respect to biological potency, all three formulations were significantly effective to knock-down HCV throughout the storage time. The cell viability was well-maintained throughout this period. Thus, this study indicates that the stored lyophilized siRNA formulation is as effective as the fresh preparation and that long-term storage could be a viable option to treat deadly diseases such as cancer and viral infection.


Subject(s)
Freeze Drying , Genetic Therapy/methods , Nanoparticles , RNA Interference , RNA Stability , RNA, Small Interfering/chemistry , Antiviral Agents/pharmacology , Cell Line, Tumor , Drug Resistance, Viral , Hepacivirus/drug effects , Hepacivirus/genetics , Hepacivirus/growth & development , Humans , Interferon-alpha/pharmacology , Lipids/chemistry , Liposomes , Nanotechnology , Nucleic Acid Conformation , Particle Size , Protamines/chemistry , Time Factors , Transfection , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...