Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Genomics ; 272(4): 470-9, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15517390

ABSTRACT

Excess light can impose severe oxidative stress on photosynthetic organisms. We have characterized high-light responses in wild-type Chlamydomonas reinhardtii and in the npq1 lor1 double mutant. The npq1 lor1 strain lacks two photoprotective carotenoids, lutein and zeaxanthin, and experiences acute photo-oxidative stress upon exposure to excess light. To examine the ability of npq1 lor1 cells to respond to photo-oxidative stress, we measured changes in lipid-soluble antioxidants following a shift from low light to high light in the wild type and the double mutant. The size of the xanthophyll cycle pool increased in both the wild type and mutant during the first 6 h of exposure to high light levels, but then decreased in the mutant during photo-oxidative bleaching. The level of alpha-tocopherol (vitamin E) was constant in the wild type and mutant during the first 6 h; then it increased by three-fold in the wild type but declined in npq1 lor1 cells. We also used cDNA microarrays and RNA gel-blot analysis to monitor differences in gene expression. Both strains showed an initial light-stress response in the form of a transient increase in expression of (1) GPXH, a glutathione peroxidase gene that has been shown to respond specifically to singlet oxygen and lipid peroxidation; (2) SMT1, a gene for a putative sterol C-methyltransferase; and (3) LI818r, a stress-responsive member of the light-harvesting complex superfamily. These transient changes in gene expression in high light were followed by a second series of changes in npq1 lor1, coincident with declines in lipid-soluble antioxidants but preceding detectable photo-oxidative damage to proteins and lipids. Thus, the response of npq1 lor1 to high light is unexpectedly complex, with initial changes in lipid-soluble antioxidants and RNA levels that are associated with acclimation in the wild type and a second wave of changes that accompanies photo-oxidative bleaching.


Subject(s)
Antioxidants/metabolism , Chlamydomonas reinhardtii/metabolism , Gene Expression Regulation , Light , Oxidative Stress , RNA, Messenger/metabolism , Xanthophylls/metabolism , Animals , Chlamydomonas reinhardtii/genetics , Chromatography, High Pressure Liquid , DNA Primers , Gene Expression Profiling , Glutathione Peroxidase/metabolism , Methyltransferases/metabolism , Oligonucleotide Array Sequence Analysis , Vitamin E/metabolism , Xanthophylls/deficiency
2.
Plant Cell ; 12(11): 2175-90, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11090217

ABSTRACT

Disease resistance in Arabidopsis is regulated by multiple signal transduction pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) function as key signaling molecules. Epistasis analyses were performed between mutants that disrupt these pathways (npr1, eds5, ein2, and jar1) and mutants that constitutively activate these pathways (cpr1, cpr5, and cpr6), allowing exploration of the relationship between the SA- and JA/ET-mediated resistance responses. Two important findings were made. First, the constitutive disease resistance exhibited by cpr1, cpr5, and cpr6 is completely suppressed by the SA-deficient eds5 mutant but is only partially affected by the SA-insensitive npr1 mutant. Moreover, eds5 suppresses the SA-accumulating phenotype of the cpr mutants, whereas npr1 enhances it. These data indicate the existence of an SA-mediated, NPR1-independent resistance response. Second, the ET-insensitive mutation ein2 and the JA-insensitive mutation jar1 suppress the NPR1-independent resistance response exhibited by cpr5 and cpr6. Furthermore, ein2 potentiates SA accumulation in cpr5 and cpr5 npr1 while dampening SA accumulation in cpr6 and cpr6 npr1. These latter results indicate that cpr5 and cpr6 regulate resistance through distinct pathways and that SA-mediated, NPR1-independent resistance works in combination with components of the JA/ET-mediated response pathways.


Subject(s)
Arabidopsis/metabolism , Cyclopentanes/metabolism , Ethylenes/metabolism , Mutation , Salicylic Acid/metabolism , Arabidopsis/genetics , Oxylipins , Signal Transduction
3.
Plant Physiol ; 120(3): 675-84, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10398702

ABSTRACT

We have identified a new locus that regulates vegetative phase change and flowering time in Arabidopsis. An early-flowering mutant, eaf1 (early flowering 1) was isolated and characterized. eaf1 plants flowered earlier than the wild type under either short-day or long-day conditions, and showed a reduction in the juvenile and adult vegetative phases. When grown under short-day conditions, eaf1 plants were slightly pale green and had elongated petioles, phenotypes that are observed in mutants altered in either phytochrome or the gibberellin (GA) response. eaf1 seed showed increased resistance to the GA biosynthesis inhibitor paclobutrazol, suggesting that GA metabolism and/or response had been altered. Comparison of eaf1 to other early-flowering mutants revealed that eaf1 shifts to the adult phase early and flowers early, similarly to the phyB (phytochrome B) and spy (spindly) mutants. eaf1 maps to chromosome 2, but defines a locus distinct from phyB, clf (curly leaf), and elf3 (early-flowering 3). These results demonstrate that eaf1 defines a new locus involved in an autonomous pathway and may affect GA regulation of flowering.


Subject(s)
Arabidopsis/physiology , Genes, Plant , Alleles , Arabidopsis/genetics , Arabidopsis/growth & development , Gibberellins/metabolism , Mutation , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...