Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 251: 112428, 2024 02.
Article in English | MEDLINE | ID: mdl-38008043

ABSTRACT

Electron carrier proteins (ECPs), binding iron-sulfur clusters, are vital components within the intricate network of metabolic and photosynthetic reactions. They play a crucial role in the distribution of reducing equivalents. In Synechocystis sp. PCC 6803, the ECP network includes at least nine ferredoxins. Previous research, including global expression analyses and protein binding studies, has offered initial insights into the functional roles of individual ferredoxins within this network. This study primarily focuses on Ferredoxin 9 (slr2059). Through sequence analysis and computational modeling, Ferredoxin 9 emerges as a unique ECP with a distinctive two-domain architecture. It consists of a C-terminal iron­sulfur binding domain and an N-terminal domain with homology to Nil-domain proteins, connected by a structurally rigid 4-amino acid linker. Notably, in contrast to canonical [2Fe2S] ferredoxins exemplified by PetF (ssl0020), which feature highly acidic surfaces facilitating electron transfer with photosystem I reaction centers, models of Ferredoxin 9 reveal a more neutral to basic protein surface. Using a combination of electron paramagnetic resonance spectroscopy and square-wave voltammetry on heterologously produced Ferredoxin 9, this study demonstrates that the protein coordinates 2×[4Fe4S]2+/1+ redox-active and magnetically interacting clusters, with measured redox potentials of -420 ± 9 mV and - 516 ± 10 mV vs SHE. A more in-depth analysis of Fdx9's unique structure and protein sequence suggests that this type of Nil-2[4Fe4S] multi-domain ferredoxin is well conserved in cyanobacteria, bearing structural similarities to proteins involved in homocysteine synthesis in methanogens.


Subject(s)
Ferredoxins , Synechocystis , Ferredoxins/metabolism , Electron Transport , Iron/chemistry , Sulfur/metabolism
2.
Metabolites ; 12(9)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36144227

ABSTRACT

Electron bifurcation is an elegant mechanism of biological energy conversion that effectively couples three different physiologically relevant substrates. As such, enzymes that perform this function often play critical roles in modulating cellular redox metabolism. One such enzyme is NADH-dependent reduced-ferredoxin: NADP+ oxidoreductase (NfnSL), which couples the thermodynamically favorable reduction of NAD+ to drive the unfavorable reduction of ferredoxin from NADPH. The interaction of NfnSL with its substrates is constrained to strict stoichiometric conditions, which ensures minimal energy losses from non-productive intramolecular electron transfer reactions. However, the determinants for this are not well understood. One curious feature of NfnSL is that both initial acceptors of bifurcated electrons are unique iron-sulfur (FeS) clusters containing one non-cysteinyl ligand each. The biochemical impact and mechanistic roles of site-differentiated FeS ligands are enigmatic, despite their incidence in many redox active enzymes. Herein, we describe the biochemical study of wild-type NfnSL and a variant in which one of the site-differentiated ligands has been replaced with a cysteine. Results of dye-based steady-state kinetics experiments, substrate-binding measurements, biochemical activity assays, and assessments of electron distribution across the enzyme indicate that this site-differentiated ligand in NfnSL plays a role in maintaining fidelity of the coordinated reactions performed by the two electron transfer pathways. Given the commonality of these cofactors, our findings have broad implications beyond electron bifurcation and mechanistic biochemistry and may inform on means of modulating the redox balance of the cell for targeted metabolic engineering approaches.

3.
Proc Natl Acad Sci U S A ; 119(12): e2117882119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35290111

ABSTRACT

Electron bifurcation, an energy-conserving process utilized extensively throughout all domains of life, represents an elegant means of generating high-energy products from substrates with less reducing potential. The coordinated coupling of exergonic and endergonic reactions has been shown to operate over an electrochemical potential of ∼1.3 V through the activity of a unique flavin cofactor in the enzyme NADH-dependent ferredoxin-NADP+ oxidoreductase I. The inferred energy landscape has features unprecedented in biochemistry and presents novel energetic challenges, the most intriguing being a large thermodynamically uphill step for the first electron transfer of the bifurcation reaction. However, ambiguities in the energy landscape at the bifurcating site deriving from overlapping flavin spectral signatures have impeded a comprehensive understanding of the specific mechanistic contributions afforded by thermodynamic and kinetic factors. Here, we elucidate an uncharacteristically low two-electron potential of the bifurcating flavin, resolving the energetic challenge of the first bifurcation event.


Subject(s)
Electrons , Flavins , Dinitrocresols , Electron Transport , Ferredoxin-NADP Reductase/metabolism , Flavins/metabolism , Oxidation-Reduction
4.
Biochim Biophys Acta Bioenerg ; 1862(4): 148377, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33453185

ABSTRACT

Electron bifurcation is a biological mechanism to drive a thermodynamically unfavorable redox reaction through direct coupling with an exergonic reaction. This process allows microorganisms to generate high energy reducing equivalents in order to sustain life and is often found in anaerobic metabolism, where the energy economy of the cell is poor. Recent work has revealed details of the redox energy landscapes for a variety of electron bifurcating enzymes, greatly expanding the understanding of how energy is transformed by this unique mechanism. Here we highlight the plasticity of these emerging landscapes, what is known regarding their mechanistic underpinnings, and provide a context for interpreting their biochemical activity within the physiological framework. We conclude with an outlook for propelling the field toward an integrative understanding of the impact of electron bifurcation.


Subject(s)
Electrons , Flavin-Adenine Dinucleotide/metabolism , Thermodynamics , Anaerobiosis , Electron Transport , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...