Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(13): 136502, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37832017

ABSTRACT

The pursuit of exotic phases of matter outside of the extreme conditions of a quantizing magnetic field is a long-standing quest of solid state physics. Recent experiments have observed spontaneous valley polarization and fractional Chern insulators in zero magnetic field in twisted bilayers of MoTe_{2}, at partial filling of the topological valence band (ν=-2/3 and -3/5). We study the topological valence band at half filling, using exact diagonalization and density matrix renormalization group calculations. We discover a composite Fermi liquid (CFL) phase even at zero magnetic field that covers a large portion of the phase diagram near twist angle ∼3.6°. The CFL is a non-Fermi liquid phase with metallic behavior despite the absence of Landau quasiparticles. We discuss experimental implications including the competition between the CFL and a Fermi liquid, which can be tuned with a displacement field. The topological valence band has excellent quantum geometry over a wide range of twist angles and a small bandwidth that is, remarkably, reduced by interactions. These key properties stabilize the exotic zero field quantum Hall phases. Finally, we present an optical signature involving "extinguished" optical responses that detects Chern bands with ideal quantum geometry.

2.
Sci Adv ; 9(36): eadi6063, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37672575

ABSTRACT

We propose magic-angle helical trilayer graphene (HTG), a helical structure featuring identical rotation angles between three consecutive layers of graphene, as a unique and experimentally accessible platform for realizing exotic correlated topological states of matter. While nominally forming a supermoiré (or moiré-of-moiré) structure, we show that HTG locally relaxes into large regions of a periodic single-moiré structure realizing flat topological bands carrying nontrivial valley Chern number. These bands feature near-ideal quantum geometry and are isolated from remote bands by a very large energy gap, making HTG a promising platform for experimental realization of correlated topological states such as integer and fractional quantum anomalous Hall states.

3.
Phys Rev Lett ; 131(9): 096401, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37721816

ABSTRACT

Moiré systems have emerged in recent years as a rich platform to study strong correlations. Here, we will propose a simple, experimentally feasible setup based on periodically strained graphene that reproduces several key aspects of twisted moiré heterostructures-but without introducing a twist. We consider a monolayer graphene sheet subject to a C_{2}-breaking periodic strain-induced pseudomagnetic field with period L_{M}≫a, along with a scalar potential of the same period. This system has almost ideal flat bands with valley-resolved Chern number ±1, where the deviation from ideal band geometry is analytically controlled and exponentially small in the dimensionless ratio (L_{M}/l_{B})^{2}, where l_{B} is the magnetic length corresponding to the maximum value of the pseudomagnetic field. Moreover, the scalar potential can tune the bandwidth far below the Coulomb scale, making this a very promising platform for strongly interacting topological phases. Using a combination of strong-coupling theory and self-consistent Hartree-Fock, we find quantum anomalous Hall states at integer fillings. At fractional filling, exact diagonaliztion reveals a fractional Chern insulator at parameters in the experimentally feasible range. Overall, we find that this system has larger interaction-induced gaps, smaller quasiparticle dispersion, and enhanced tunability compared to twisted graphene systems, even in their ideal limit.

4.
Nat Mater ; 22(3): 316-321, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36550373

ABSTRACT

Magic-angle twisted trilayer graphene (MATTG) hosts flat electronic bands, and exhibits correlated quantum phases with electrical tunability. In this work, we demonstrate a spectroscopy technique that allows for dissociation of intertwined bands and quantification of the energy gaps and Chern numbers C of the correlated states in MATTG by driving band crossings between Dirac cone Landau levels and energy gaps in the flat bands. We uncover hard correlated gaps with C = 0 at integer moiré unit cell fillings of ν = 2 and 3 and reveal charge density wave states originating from van Hove singularities at fractional fillings ν = 5/3 and 11/3. In addition, we demonstrate displacement-field-driven first-order phase transitions at charge neutrality and ν = 2, which are consistent with a theoretical strong-coupling analysis, implying C2T symmetry breaking. Overall, these properties establish a diverse electrically tunable phase diagram of MATTG and provide an avenue for investigating other related systems hosting both steep and flat bands.

5.
Phys Rev Lett ; 128(17): 176404, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35570445

ABSTRACT

We consider a family of twisted graphene multilayers consisting of n-untwisted chirally stacked layers, e.g., AB, ABC, etc, with a single twist on top of m-untwisted chirally stacked layers. Upon neglecting both trigonal warping terms for the untwisted layers and the same sublattice hopping between all layers, the resulting models generalize several remarkable features of the chiral model of twisted bilayer graphene (CTBG). In particular, they exhibit a set of magic angles which are identical to those of CTBG at which a pair of bands (i) are perfectly flat, (ii) have Chern numbers in the sublattice basis given by ±(n,-m) or ±(n+m-1,-1) depending on the stacking chirality, and (iii) satisfy the trace condition, saturating an inequality between the quantum metric and the Berry curvature, and thus realizing ideal quantum geometry. These are the first higher Chern bands that satisfy (iii) beyond fine-tuned models or combinations of Landau levels. We show that ideal quantum geometry is directly related to the construction of fractional quantum Hall model wave functions. We provide explicit analytic expressions for the flatband wave functions at the magic angle in terms of the CTBG wave functions. We also show that the Berry curvature distribution in these models can be continuously tuned while maintaining perfect quantum geometry. Similar to the study of fractional Chern insulators in ideal C=1 bands, these models pave the way for investigating exotic topological phases in higher Chern bands for which no Landau level analog is available.

6.
Nature ; 600(7889): 439-443, 2021 12.
Article in English | MEDLINE | ID: mdl-34912084

ABSTRACT

Fractional Chern insulators (FCIs) are lattice analogues of fractional quantum Hall states that may provide a new avenue towards manipulating non-Abelian excitations. Early theoretical studies1-7 have predicted their existence in systems with flat Chern bands and highlighted the critical role of a particular quantum geometry. However, FCI states have been observed only in Bernal-stacked bilayer graphene (BLG) aligned with hexagonal boron nitride (hBN)8, in which a very large magnetic field is responsible for the existence of the Chern bands, precluding the realization of FCIs at zero field. By contrast, magic-angle twisted BLG9-12 supports flat Chern bands at zero magnetic field13-17, and therefore offers a promising route towards stabilizing zero-field FCIs. Here we report the observation of eight FCI states at low magnetic field in magic-angle twisted BLG enabled by high-resolution local compressibility measurements. The first of these states emerge at 5 T, and their appearance is accompanied by the simultaneous disappearance of nearby topologically trivial charge density wave states. We demonstrate that, unlike the case of the BLG/hBN platform, the principal role of the weak magnetic field is merely to redistribute the Berry curvature of the native Chern bands and thereby realize a quantum geometry favourable for the emergence of FCIs. Our findings strongly suggest that FCIs may be realized at zero magnetic field and pave the way for the exploration and manipulation of anyonic excitations in flat moiré Chern bands.

7.
Science ; 371(6534): 1133-1138, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33542148

ABSTRACT

Engineering moiré superlattices by twisting layers in van der Waals (vdW) heterostructures has uncovered a wide array of quantum phenomena. We constructed a vdW heterostructure that consists of three graphene layers stacked with alternating twist angles ±Î¸. At the average twist angle θ ~ 1.56°, a theoretically predicted "magic angle" for the formation of flat electron bands, we observed displacement field-tunable superconductivity with a maximum critical temperature of 2.1 kelvin. By tuning the doping level and displacement field, we found that superconducting regimes occur in conjunction with flavor polarization of moiré bands and are bounded by a van Hove singularity (vHS) at high displacement fields. Our findings display inconsistencies with a weak coupling description, suggesting that the observed moiré superconductivity has an unconventional nature.

8.
Phys Rev Lett ; 123(11): 116601, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31573250

ABSTRACT

Fermi gases in two dimensions display collective dynamics originating from head-on collisions, a collinear carrier scattering process that dominates angular relaxation at not-too-high temperatures T≪T_{F}. In this regime, a large family of excitations emerges, with an odd-parity angular structure of momentum distribution and exceptionally long lifetimes. This leads to "tomographic" dynamics: fast 1D spatial diffusion along the unchanging velocity direction accompanied by a slow angular dynamics that gradually randomizes velocity orientation. The tomographic regime features an unusual hierarchy of timescales and scale-dependent transport coefficients with nontrivial fractional scaling dimensions, leading to fractional-power current flow profiles and unusual conductance scaling versus sample width.

SELECTION OF CITATIONS
SEARCH DETAIL
...